Supplementary Information

Chromene-Dihydropyrimidinone and Xanthene-Dihydropyrimidinone hybrids: design, synthesis, and antibacterial and antibiofilm activities.

Samuel J. Santos,^a Fernanda C. P. Rossatto,^b Natália S. Jardim,^c Daiana S. de Ávila,^c Rodrigo Ligabue-Braun,^d Luiz A. M. Fontoura,^e Karine R. Zimmer^{*b} and Dennis Russowsky^{*a}

^a Laboratório de Sínteses Orgânicas, Instituto de Química, Universidade Federal do Rio Grande do Sul, Av. Bento Gonçalves 9500, CEP 91501-970, Porto Alegre, RS, Brazil.

^b Departamento de Ciências Básicas da Saúde, Universidade Federal de Ciências da Saúde de Porto Alegre, R. Sarmento Leite 245, CEP 90050-170, Centro Histórico, Porto Alegre, RS, Brazil.

^c Grupo de Pesquisa em Bioquímica e Toxicologia em *Caenorhabditis elegans* (GBToxCe), Universidade Federal do Pampa, BR 472, Km 585, CEP 97501-970, Uruguaiana, RS, Brazil.

^d Departamento de Farmacociências, Universidade Federal de Ciências da Saúde de Porto Alegre, R. Sarmento Leite 245, CEP 90050-170, Centro Histórico, Porto Alegre, RS, Brazil.

^e Centro de Pesquisa em Produto e Desenvolvimento, Universidade Luterana do Brasil, Av. Farroupilha 8001, CEP 92425-900, Canoas, RS, Brazil.

Index

¹ H NMR and ¹³ C NMR Spectra of Aldehydes 3a-d	S2
¹ H NMR and ¹³ C NMR Spectra of propargyloxy-chromenes 6a,d	.S10
¹ H NMR and ¹³ C NMR Spectra of propargyloxy-xanthenediones 8a,d	S18
¹ H NMR and ¹³ C NMR Spectra of Chloro-DHPMs 12a,d	.S26
¹ H NMR and ¹³ C NMR Spectra of Azido-DHPMs 14a,d	S34
¹ H NMR and ¹³ C NMR Spectra of Hybrids 15a-v	.S42
Table S1. Antibiofilm activity of hybrids compounds	.S92

Figure S1: ¹H-NMR (300 MHz, CDCl₃) of 3a.

S3

Figure S3: ¹H-NMR (400 MHz, CDCI₃) of 3b.

Figure S4: ¹³C-NMR (75 MHz, CDCl₃) of 3b.

Figure S5: ¹H-NMR (300 MHz, CDCl₃) of 3c.

Figure S6: ¹³C-NMR (75 MHz, CDCl₃) of 3c.

Figure S7: ¹H-NMR (400 MHz, CDCl₃) of 3d.

Figure S8: ¹³C-NMR (75 MHz, CDCl₃) of 3d.

Figure S10: ¹³C-NMR (100 MHz, DMSO-d₆) of 6a.

Figure S14: ¹³C-NMR (100 MHz, DMSO-d₆) of 6c.

Figure S20: ¹³C-NMR (100 MHz, CDCl₃) of 8b.

Figure S22: ¹³C-NMR (100 MHz, CDCI₃) of 8c.

Figure S24: ¹³C-NMR (100 MHz, CDCl₃) of 8d.

Figure S26: ¹³C-NMR (100 MHz, DMSO-d₆) of 12a.

Figure S27: ¹H-NMR (400 MHz, DMSO-d₆) of 12b.

Figure S28: ¹³C-NMR (100 MHz, DMSO-d₆) of 12b.

Figure S29: ¹H-NMR (400 MHz, DMSO-d₆) of 12c.

Figure S31: ¹H-NMR (400 MHz, DMSO-d₆) of 12d.

Figure S34: ¹³C-NMR (100 MHz, DMSO-d₆) of 14a.

Figure S39: ¹H-NMR (400 MHz, DMSO-d₆) of 14d.

Figure S40: ¹³C-NMR (100 MHz, DMSO-d₆) of 14d.

Figure S41: ¹H-NMR (400 MHz, DMSO-d₆) of 15a.

Figure S46: ¹³C-NMR (100 MHz, DMSO-d₆) of 15c.

Figure S49: ¹H-NMR (400 MHz, DMSO-d₆) of 15e.

Figure S50: ¹³C-NMR (100 MHz, DMSO-d₆) of 15e.

Figure S52: ¹³C-NMR (100 MHz, DMSO-d₆) of 15f.

Figure S53: ¹H-NMR (400 MHz, DMSO-d₆) of 15g.

Figure S55: ¹H-NMR (400 MHz, DMSO-d₆) of 15h.

Figure S59: ¹H-NMR (400 MHz, DMSO-d₆) of 15j.

Figure S60: ¹³C-NMR (100 MHz, DMSO-d₆) of 15j.

Figure S62: ¹³C-NMR (100 MHz, DMSO-d₆) of 15k.

Figure S65: ¹H-NMR (400 MHz, CDCl₃) of 15m.

Figure S66: ¹³C-NMR (100 MHz, CDCl₃) of 15m.

Figure S67: ¹³C-NMR (100 MHz, CDCI₃) of 15m (161.0 to 164.0 ppm)

Figure S68: ¹H-NMR (400 MHz, CDCI₃) of 15n.

Figure S69: ¹³C-NMR (100 MHz, CDCI₃) of 15n.

Figure S70: ¹H-NMR (400 MHz, CDCI₃) of 150.

Figure S71: ¹³C-NMR (100 MHz, CDCl₃) of 150.

Figure S72: ¹³C-NMR (100 MHz, CDCI₃) of 150 (114.0 to 117.0 ppm).

Figure S73: ¹H-NMR (400 MHz, CDCI₃) of 15p.

Figure S75: ¹³C-NMR (100 MHz, CDCI₃) of 150 (162.0 to 165.0 ppm).

Figure S76: ¹H-NMR (400 MHz, CDCl₃) of 15q.

Figure S77: ¹³C-NMR (100 MHz, CDCl₃) of 15q.

Figure S78: ¹H-NMR (400 MHz, CDCl₃) of 15r.

Figure S79: ¹³C-NMR (100 MHz, CDCI₃) of 15r.

Figure S80: ¹H-NMR (400 MHz, CDCI₃) of 15s.

Figure S81: ¹³C-NMR (100 MHz, CDCl₃) of 15s.

Figure S84: ¹H-NMR (400 MHz, CDCI₃) of 15u.

Figure S86: ¹H-NMR (400 MHz, CDCl₃) of 15u (148.0 to 163.0 ppm).

Figure S87: ¹H-NMR (400 MHz, CDCl₃) of 15u (112.0 to 117.0 ppm).

Figure S88: ¹H-NMR (400 MHz, CDCl₃) of 15u (26.0 to 57.0 ppm).

Figure S89: ¹H-NMR (400 MHz, CDCl₃) of 15v.

Figure S90: ¹³C-NMR (100 MHz, CDCl₃) of 15v.

Table S1. Antibiofilm activity of chromene and xanthene derivatives against *S. aureus*. The results are reported in % of biofilm formation at 570 nm compared to the untreated control (100% of biofilm formation).

Compound	Concentration (μg mL ⁻¹)							
	128	64	32	16	8	4	2	1
15a	46.37 ± 7.75*	57.10 ± 7.60*	72.13 ± 8.68*	82.81 ± 12.90	90.04 ± 7.33	91.38 ± 11.34	94.73 ± 12.55	100.61 ± 9.73
15b	50.38 ± 5.19*	71.76 ± 5.47*	88.86 ± 11.15	90.11 ± 11.75	98.40 ± 6.01	100.39 ± 7.57	100.19 ± 10.72	114.84 ± 14.10
15c	66.29 ± 7.48*	97.09 ± 6.66	103.19 ± 7.59	110.17 ± 12.69	110.68 ± 7.43	105.80 ± 5.67	110.38 ± 7.20	106.20 ± 8.34
15d	76.16 ± 3.87*	81.32 ± 7.83*	80.35 ± 7.45*	103.59 ± 6.85	109.83 ± 3.21*	97.48 ± 5.40	82.96 ± 3.03*	78.79 ± 4.46*
15e	65.54 ± 6.61*	96.21 ± 12.63	106.70 ± 9.89	108.20 ± 9.40	111.99 ± 13.56	104.38 ± 8.59	106.06 ± 5.47	112.39 ± 15.43
15f	63.89 ± 9.22*	85.93 ± 7.31*	93.58 ± 12.17	95.15 ± 8.24	93.71 ± 11.50	92.11 ± 12.05	93.05 ± 1.55*	98.78 ± 9.89
15g	79.15 ± 8.59*	88.90 ± 7.41*	99.57 ± 3.72	104.45 ± 13.15	95.06 ± 7.28	92.68 ± 7.58	98.79 ± 3.15	108.32 ± 8.01
15h	85.45 ± 5.39*	88.63 ± 9.69	95.40 ± 10.25	107.73 ± 9.24	101.00 ± 5.97	103.15 ± 10.80	95.60 ± 6.65	91.92 ± 8.24
15i	63.29 ± 1.64*	74.19 ± 6.71*	88.82 ± 6.56*	94.85 ± 4.41	95.90 ± 5.23	99.91 ± 7.65	96.78 ± 9.95	105.47 ± 10.10
15j	84.57 ± 5.06*	89.05 ± 2.46*	94.19 ± 4.56	98.49 ± 1.68	100.39 ± 5.21	95.12 ± 6.43	93.33 ± 4.56	93.82 ± 9.23
15k	79.13 ± 0.99*	82.45 ± 5.75*	93.46 ± 6.76	95.81 ± 11.60	97.23 ± 3.48	98.28 ± 5.52	96.38 ± 2.08*	99.26 ± 9.06
151	58.21 ± 7.54*	83.67 ± 7.57*	94.92 ± 5.87	109.66 ± 10.46	115.50 ± 2.21*	114.58 ± 6.48*	108.90 ± 2.17*	113.73 ± 10.32
15m	56.32 ± 7.78*	78.28 ± 8.47*	86.31 ± 8.68	100.58 ± 4.95	105.67 ± 5.92	99.28 ± 9.87	102.03 ± 5.67	101.10 ± 9.11
15n	58.25 ± 7.08*	72.65 ± 3.90*	98.24 ± 7.03	111.09 ± 8.46	108.95 ± 16.91	104.20 ± 9.42	106.41 ± 8.94	109.89 ± 3.61*
150	72.75 ± 11.53*	94.53 ± 8.34	102.88 ± 3.99	107.06 ± 4.11*	123.19 ± 10.15*	125.86 ± 16.83	128.31 ± 20.30	112.80 ± 0.66
15p	66.38 ± 7.29*	81.78 ± 8.16*	92.53 ± 10.56	107.44 ± 5.34	116.65 ± 7.14*	116.10 ± 8.13*	111.82 ± 5.86*	123.08 ± 11.85*
15q	54.19 ± 8.46*	63.00 ± 11.32*	69.72 ± 7.74*	79.14 ± 7.16*	87.23 ± 8.11	86.24 ± 6.98*	90.48 ± 6.34	90.32 ± 12.47
15r	71.01 ± 10.46*	73.86 ± 4.43*	99.84 ± 7.08	106.88 ± 7.38	107.16 ± 9.26	101.83 ± 6.30	102.49 ± 1.34	102.24 ± 1.49
15s	73.80 ± 8.21*	88.58 ± 8.85	91.59 ± 9.14	96.09 ± 7.89	99.42 ± 4.48	101.18 ± 8.74	103.24 ± 8.76	122.70 ± 8.60*
15t	76.65 ± 5.99*	81.96 ± 5.61*	98.70 ± 8.86	103.19 ± 7.03	110.63 ± 10.96	111.57 ± 9.44	107.43 ± 11.63	110.11 ± 10.22
15u	82.15 ± 5.40*	94.10 ± 2.04*	97.61 ± 2.26	99.55 ± 3.58	105.11 ± 3.14*	101.54 ± 2.32	98.16 ± 5.74	97.28 ± 4.69
15v	77.29 ± 6.03*	97.70 ± 10.79	99.60 ± 11.40	103.19 ± 3.87	103.10 ± 8.90	100.60 ± 14.78	102.28 ± 4.54	106.41 ± 7.02
	Concentration (μg mL ⁻¹)							
Vancomycin	16	8	4	2	1	0.5	0.25	0.125
	9.55 ± 1.46*	10.27 ± 0.98*	12.88 ± 4.80*	19.22 ± 3.22*	23.77 ± 1.80*	26.84 ± 4.10*	38.13 ± 3.93*	49.80 ± 4.65*
* ~ < 0.05						•		