Supporting Information

Sn regulates the electronic structure and metal particles of Pd to improve the hydrogenation performance of 4-nitrophenol

Lele Yan, Yuyao Wang, Lina Zhu, Junjie Chen, Yuyang Xu, Zijian Wang, Tongyang Song, Bo Zhao, Xianlang Chen * and Rongrong Li *

Engineering Research Center of Recycling & Comprehensive Utilization of Pharmaceutical and Chemical Waste of Zhejiang Province, Taizhou University, Taizhou, Zhejiang, P. R. China

*Corresponding author: E-mail: chenxianlangaini@163.com; lrr@tzc.edu.cn.

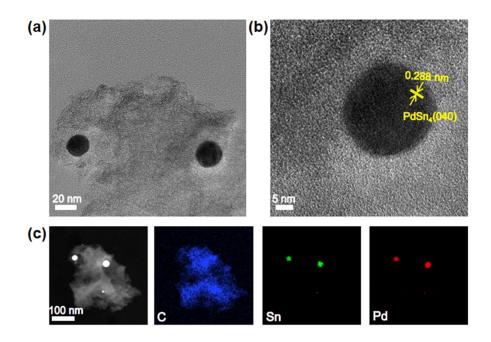


Fig. S1 (a, b) The HR-TEM and (c) TEM Elemental mapping image of PdSn₄/C

Samples	Pd (at %)	Sn (at %)
PdSn/C	0.64	0.54
PdSn ₂ /C	0.60	1.10
PdSn ₄ /C	0.58	2.08
used-PdSn ₄ /C	0.56	2.05

Table S1. XPS analysis for PdSn/C, PdSn₂/C, PdSn₄/C nd used-PdSn₄/C catalysts.

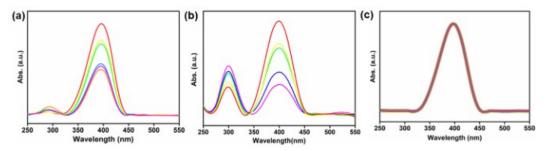


Fig. S2 Ultraviolet visible absorption diagram of p-nitrophenol catalytic hydrogenation reaction of (a) Sn/C, (b) $PdSn_6/C$ and (c) without catalyst.

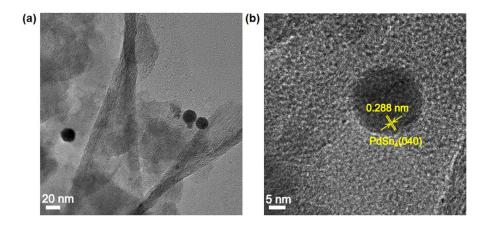


Fig. S3 (a, b)The HR-TEM image of used PdSn₄/C catalyst for 6 run times