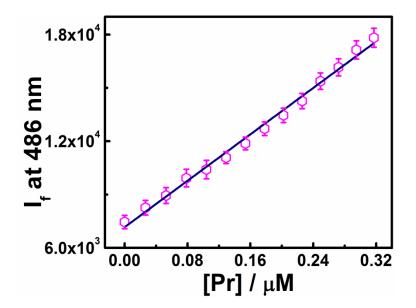
Supporting information


Aggregation Assisted Turn-On Response of ANS Dye towards Protamine

Dibya Kanti Mal^a, Padma Nilaya Jonnalgadda^{a,b}, and Goutam Chakraborty^{b*}

^aHomi Bhabha National Institute, Anushaktinagar, Mumbai-400094.

^bLaser and Plasma Technology Division, Bhabha Atomic Research Centre, Mumbai-400085.

S.N.	Table of content	Page
1	Figure S1. Linear fit of intensity change of ANS against Pr concentration in the dynamic range of 0 to 0.32 μ M for LOD determination. (I ₄₈₆ = 32.64 x 10 ³ [Pr/ μ M]+7165.4; R ² = 0.993, LOD ~4.05 nM, standard dev = 44.1)	S2
2	Figure S2. Normalized emission spectra of 180 μ M ANS at (1) 0 and (10) 3.67 μ M of Pr.	S2
3	Figure S3. Emission spectra of ANS-Pr complex (180 μ M ANS + 3.5 μ M Pr) with change in pH of the medium from 3.06 to 9.83. Inset: Variation of emission intensity of ANS-Pr complex at 486 nm with pH of the medium.	S3
4	Figure S4. Emission spectra of ANS (180 μ M) with change in pH of the medium from 2.00 to 11.91. Inset: Variation of emission intensity of ANS complex at 524 nm with pH of the medium.	S3
5	Figure S5. Peak normalized emission spectra of ANS-Pr complex (180 µM ANS+3.5 µM Pr) at 0 (black dashed) and 46.94 mM (light green) NaCl.	S4
6	Figure S6. Excited-state decay traces of ANS-Pr complex (180 μ M ANS+3.5 μ M Pr) with increase in NaCl concentration (in mM): (1) 0, (2) 3.14, (3) 11.98, (4) 22.54, (5) 31.93, (6) 40.34 and (7) 56.35. Inset: Decrease in mean fluorescence lifetime of ANS-Pr complex as a function increasing NaCl concentration. λ_{ex} = 405 nm, λ_{em} = 486 nm.	S4
7	Figure S7. Peak normalized emission spectra of ANS-Pr complex (180 µM ANS+3.5 µM Pr) at 20 °C (dark yellow dashed) and 70 °C (red).	S5
8	Figure S8. Peak normalized emission spectra of ANS-Pr complex (180 μ M ANS+3.5 μ M Pr) at 0 (light green dashed) and 3.41 μ M (red) Hp.	S5
9	Figure S9. Excited-state decay traces of ANS-Pr complex (180 μ M ANS+3.5 μ M Pr) with increase in heparin (Hp) concentration (in μ M): (1) 0, (2) 1.72, (3) 2.38, (4) 2.66, (5) 2.92 and (6) 3.98. Inset: Reduction of mean fluorescence lifetime of ANS-Pr complex as a function of Hp concentration. λ_{ex} = 405 nm, λ_{em} = 486 nm.	S6
10	Table S1. Fluorescence decay parameters for ANS-Pr complex (180 µM ANS+3.5 µM Pr) in water at different concentrations of NaCl.	S6-S7
11	Table S2. Fluorescence decay parameters for ANS-Pr complex (180 μ M ANS+ 3.5 μ M Pr) inwater at different concentrations of Heparin (Hp).	S7

Figure S1. Linear fit of intensity change of ANS against Pr concentration in the dynamic range of 0 to 0.32 μ M for LOD determination. (I₄₈₆ = 32.64 x 10³ [Pr/ μ M]+7165.4; R² = 0.993, LOD ~4.05 nM, standard dev = 44.1, obtained from 10 successive measurements of free ANS in water).

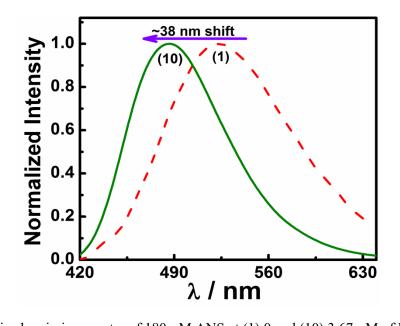
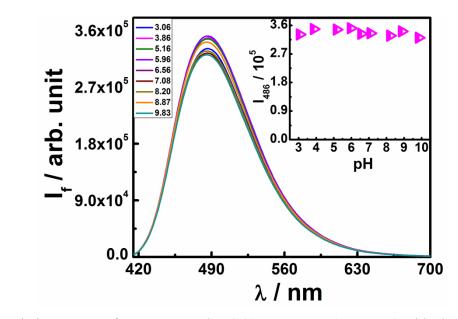
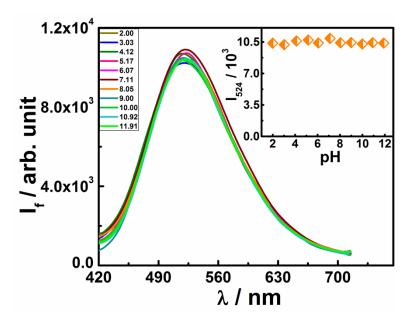




Figure S2. Normalized emission spectra of 180 µM ANS at (1) 0 and (10) 3.67 µM of Pr.

Figure S3. Emission spectra of ANS-Pr complex (180 μ M ANS + 3.5 μ M Pr) with change in pH of the medium from 3.06 to 9.83. Inset: Variation of emission intensity of ANS-Pr complex at 486 nm with pH of the medium.

Figure S4. Emission spectra of ANS (180 μ M) with change in pH of the medium from 2.00 to 11.91. Inset: Variation of emission intensity of ANS complex at 524 nm with pH of the medium.

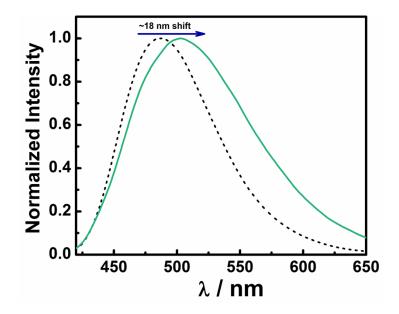



Figure S5. Peak normalized emission spectra of ANS-Pr complex (180 μ M ANS+3.5 μ M Pr) at 0 (black dashed) and 46.94 mM (light green) NaCl.

Figure S6. Excited-state decay traces of ANS-Pr complex (180 μ M ANS+3.5 μ M Pr) with increase in NaCl concentration (in mM): (1) 0, (2) 3.14, (3) 11.98, (4) 22.54, (5) 31.93, (6) 40.34 and (7) 56.35. Inset: Decrease in mean fluorescence lifetime of ANS-Pr complex as a function increasing NaCl concentration. λ_{ex} = 405 nm, λ_{em} = 486 nm.

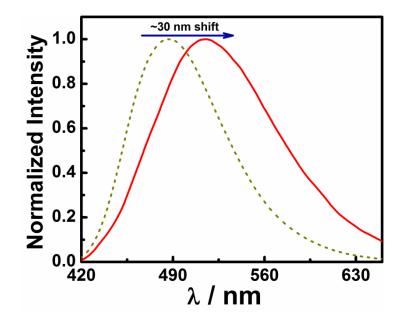


Figure S7. Peak normalized emission spectra of ANS-Pr complex (180 μ M ANS+3.5 μ M Pr) at 20 °C (dark yellow dashed) and 70 °C (red).

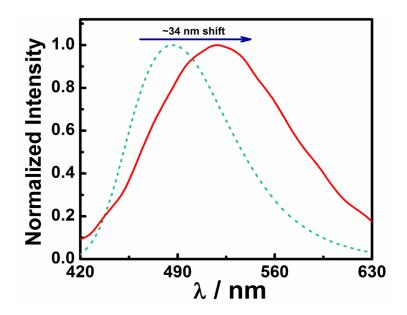
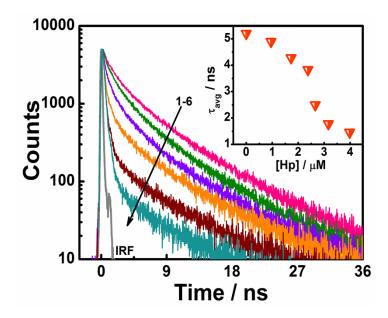



Figure S8. Peak normalized emission spectra of ANS-Pr complex (180 μ M ANS+3.5 μ M Pr) at 0 (light green dashed) and 3.41 μ M (red) Hp.

Figure S9. Excited-state decay traces of ANS-Pr complex (180 μ M ANS+3.5 μ M Pr) with increase in heparin (Hp) concentration (in μ M): (1) 0, (2) 1.72, (3) 2.38, (4) 2.66, (5) 2.92 and (6) 3.98. Inset: Reduction of mean fluorescence lifetime of ANS-Pr complex as a function of Hp concentration. λ_{ex} = 405 nm, λ_{em} = 486 nm.

Table S1. Fluorescence decay parameters for ANS-Pr complex (180 μ M ANS+3.5 μ M Pr) in water at different concentrations of NaCl.

Conc. of NaCl	τ_1 (ns)	A ₁ (%)	τ ₂ (ns)	A ₂ (%)	τ ₃ (ns)	A ₃ (%)	τ _{avg} (ns)
(μM)							
0	0.46	6.5	2.46	32.3	7.12	61.2	5.18
0.53	0.45	6.4	2.29	30.8	6.97	62.8	5.11
1.27	0.44	7.6	2.25	35.2	6.66	57.2	4.63
3.14	0.41	7.8	2.12	35.0	6.60	57.2	4.55
6.18	0.36	9.8	1.98	34.5	6.40	55.7	4.28
11.98	0.34	13.0	1.96	33.7	6.30	53.3	4.06
22.54	0.29	24.8	1.93	33.5	6.20	41.7	3.30
31.93	0.27	41.3	1.65	26.8	5.54	31.9	2.32

40.34	0.26	60.1	1.26	19.6	4.45	20.3	1.30
47.90	0.26	70.3	1.46	17.0	4.66	12.7	1.02
56.35	0.26	79.0	1.35	12.2	4.57	8.8	0.77

Table S2. Fluorescence decay parameters for ANS-Pr complex (180 μ M ANS+ 3.5 μ M Pr) in water at different concentrations of Heparin (Hp).

Conc. of Hp	τ_1 (ns)	A ₁ (%)	τ ₂ (ns)	A ₂ (%)	τ ₃ (ns)	A ₃ (%)	τ _{avg} (ns)
(μM) 0	0.37	6.6	2.18	30.9	7.20	62.5	5.20
0.95	0.35	7.2	2.15	34.9	7.14	57.9	4.90
1.36	0.34	9.3	2.10	38.3	7.14	52.4	4.57
1.73	0.34	13.1	2.05	38.4	7.14	48.5	4.28
2.07	0.32	19.4	2.03	33.0	7.12	47.6	4.12
2.38	0.26	33.6	1.90	18.6	7.10	47.8	3.83
2.66	0.24	61.1	1.50	6.7	7.00	32.2	2.50
2.93	0.24	69.4	1.40	5.8	7.00	24.8	1.98
3.17	0.24	72.8	1.30	4.8	6.90	22.4	1.78
3.98	0.24	76.2	1.00	6.0	6.85	17.8	1.46