Supporting Information for

Theoretical Investigations on the Activity Influence Factors of •Mn(CO)5 Catalyzed Alkynes Hydrosilylation and Hydrogermylation

Jinying Zhang^a, Bin Lu^{b,*}, Lingpeng Meng^a, Xiaoyan Li^{a,*}

a. College of Chemistry and Material Science, Hebei Normal University, Shijiazhuang 050024, P. R. China.

b. Hebei Key Laboratory of Inorganic and Nano-Materials, National Demonstratin
Center for Experimental Chemistry, Hebei Normal University, Shijiazhuang 050024,
P. R. China.

Email: lubincn@hebtu.edu.cn and lixiaoyan@hebtu.edu.cn

Fig. S1. The Gibbs-free energy profiles for hydrogermylation of internal alkyne catalyzed by \cdot Mn(CO)₅ (relative enthalpies are given in parentheses)

Fig. S2. Geometries and key bond lengths (in Å) of stationary points on the PES of hydrogermylation of internal alkyne catalyzed by \cdot Mn(CO)₅.

Fig. S3. Geometries and key bond lengths (in Å) of stationary points of the complexes formed between \cdot Mn(CO)₅ and the solvents.

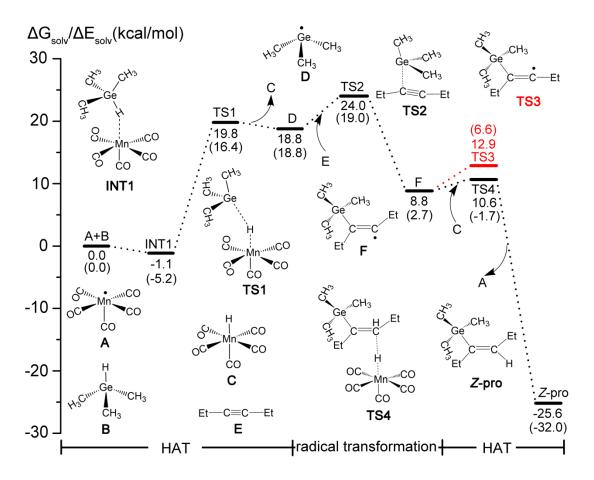


Fig. S1. The Gibbs-free energy profiles for hydrogermylation of internal alkyne catalyzed by \cdot Mn(CO)₅ (relative electronic energies are given in parentheses).

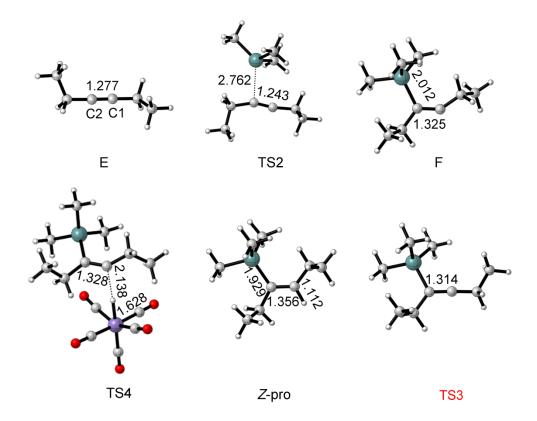
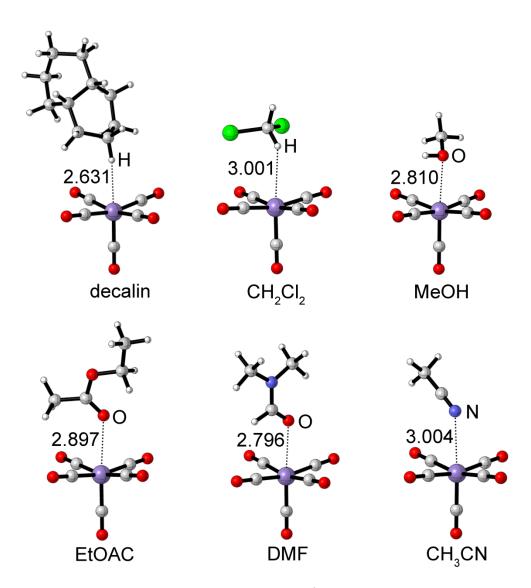



Fig. S2. Geometries and key bond lengths (in Å) of stationary points on the PES of hydrogermylation of internal alkyne catalyzed by \cdot Mn(CO)₅.

Fig. S3. Geometries and key bond lengths (in Å) of stationary points of the complexes formed between \cdot Mn(CO)₅ and the solvents.