Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2023

Supporting Information

Polychlorinated Alkylation Annulation of N-arylacrylamide under

Electrochemical Conditions

Yuyu Dai, Miao Cui, Xiaoqing Li, Huiming Chen, Xiangsheng Xu*

College of chemical Engineering, Zhejiang University of Technology, HangZhou 310014, P. R. China.

*E-mail: future@zjut.edu.cn

Supporting Information	S1
1. General Information	S2
2. General Procedure for the Electrolysis	S2
3. CV curves of diazo salt solution	S3
4. Characterization of Products	S3
5. References	S9
6. NMR spectra	S10

1. General Information

Unless stated otherwise, all reactions were carried out under an air atmosphere. All solvents were purified and dried according to standard methods prior to use. All commercial reagents were used without additional purification. Flash chromatography was carried out with silica gel (200-300 mesh). ¹H NMR and ¹³C NMR spectra were recorded at 400/500/600 MHz and 100/125 MHz spectrometers in CDCl₃. Data are reported as follows: chemical shift (δ ppm), integration, multiplicity (s = singlet, d = doublet, t = triplet, q = quartet, m = multiplet, dd = doublet of doublets); coupling constants (*J*) are in Hertz (Hz). High resolution mass spectra (HRMS) were obtained by the ESI ionization sources.

2. General Procedure for the Electrolysis

(1) General Procedure

A 10-mL three-necked round-bottomed flask was charged with the substrate (0.2 mmol), $C_6H_5N_2BF_4$ (5eq) and electrolyte (0.1 M) The flask was equipped with a rubber stopper, a reticulated vitreous carbon (RVC) anode (1 cm x 1 cm x 1 cm) and a platinum plate (1 cm x 1 cm) cathode and then flushed with air. The reaction device in small scale was given in Figure S1a. DCM (4 mL) and H₂O (2 mL) were added. The constant current (10 mA) electrolysis was carried out at room temperature until complete consumption of the substrate (monitored by TLC or ¹H NMR). The phases were separated and the aqueous phase was extracted with DCM (3 x 20 mL). The combined organic solution was dried over anhydrous MgSO₄, filtered, and concentrated under reduced pressure. The residue was chromatographed through silica gel eluting with ethyl acetate/hexanes to give the product.

(2) Scale up experiment

A 200-mL beaker-type cell was charged with the substrate (6 mmol, 1.05 g), $C_6H_5N_2BF_4$ (5eq) and electrolyte (0.1 M) The flask was equipped with a rubber stopper, a reticulated vitreous carbon (RVC) anode (2 cm x 2 cm x 1 cm) and a platinum plate (2 cm x 2 cm) cathode and then flushed with air. DCM (100 mL) and H₂O (50 mL) were added. The constant current (200 mA) electrolysis was carried out at room temperature until complete consumption of the substrate (monitored by TLC or ¹H NMR). The phases were separated and the aqueous phase was extracted with DCM (3 x 80 mL). The combined organic solution was dried over anhydrous MgSO₄, filtered, and concentrated under reduced pressure. The residue was chromatographed through silica gel eluting with ethyl acetate/hexanes to give the product.

In addition, we optimized the current size of part of the amplification experiment and found that the yield was 67% under the optimized conditions. The condition: RVC anode (2 cm x 2 cm x 1 cm), Pt cathode (2 cm x 2 cm), constant current = 100 mA, 1a (6 mmol), 2a (100 mL), $C_6H_4N_2BF_4$ (5 eq), nBu₄NBr (0.1 M) and H₂O (50 mL) in an undivided cell under air atmosphere at room temperature. The reaction device in large scale was shown in Figure S1b.

(3) The picture of reaction

Figure S1 (a) The reaction device in small scale; (b) The reaction device in large scale; (c) The reaction constant potential rectifier (DJS-292B).

3. CV curves of diazo salt mediator

Figure S2 CV curves of $CH_2Cl_2:H_2O$ (4:2) containing 0.1 M nBu₄NBr electrolyte solution (blank solution); CV curves of $CH_2Cl_2:H_2O$ (4:2) containing 0.1 M nBu₄NBr electrolyte and 5 eq diazo salt solution (diazo salt solution); CV curves of $CH_2Cl_2:H_2O$ (4:2) containing 0.1 M nBu₄NBr electrolyte and 5 eq diazo salt solution without background.

4. Characterization of Products

3-(2,2-dichloroethyl)-1,3,7-trimethylindolin-2-one (3a)

The reaction of **1a** (35.0 mg, 0.2 mmol) and **2a** (192.0 mg, 1.0 mmol) gave **3a** as yellow oil (43.5mg, 88%); The product was purified by flash column chromatography (petroleum ether/ethyl acetate = 20/1).

¹H NMR (400 MHz, Chloroform-*d*) δ 7.31-7.38 (m, 1H), 7.22 (dd, J = 7.5, 1.3 Hz, 1H), 7.13 (td, J = 7.5, 1.0 Hz, 1H), 6.90 (d, J = 7.8 Hz, 1H), 5.47 – 5.35 (m, 1H), 3.23 (s, 3H), 3.11 – 3.01 (m, 1H), 2.73 (dd, J = 14.9, 4.1 Hz, 1H), 1.42 (s, 3H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 179.0, 143.4, 131.0, 128.6, 122.6 (2C), 108.6, 69.6, 50.1, 47.7, 26.4, 24.7. The corresponding other spectral data of this compound can be seen in reference literature.¹

1-benzyl-3-(2,2-dichloroethyl)-3-methylindolin-2-one (3c)

The reaction of 1c (50.2 mg, 0.2 mmol) and 2a (192.0 mg, 1.0 mmol) gave 3c as yellow oil (39.3 mg, 59%); The product was purified by flash column chromatography (petroleum ether/ethyl acetate = 20/1).¹H NMR (400 MHz, Chloroform-*d*) δ 7.31 (d, J = 4.3 Hz, 4H), 7.23 – 7.17 (m, 3H), 7.07 (m, 1H), 6.82 – 6.76 (m, 1H), 5.45 (dd, J = 8.9, 4.4 Hz, 1H), 5.04 – 4.95 (m, 2H), 4.81 (d, J = 15.5 Hz, 1H), 3.11 – 3.03 (m, 1H), 2.76 (dd, J = 14.9, 4.4 Hz, 1H), 1.45 (s, 3H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 179.1, 142.6, 135.7, 131.1, 129.3, 128.8, 128.5, 127.9, 127.4, 122.7, 109.7, 69.6, 49.9, 47.2, 44.1, 26.1. The corresponding other spectral data of this compound can be seen in reference literature.¹

3-(2,2-dichloroethyl)-3-methyl-1-phenylindolin-2-one (3d)

The reaction of 1d (47.4 mg, 0.2 mmol) and 2a (192.0 mg, 1.0 mmol) gave 3d as yellow oil (42.6 mg, 67%); The product was purified by flash column chromatography (petroleum ether/ethyl acetate = 20/1). ¹H NMR (400 MHz, Chloroform-*d*) δ 7.52 (dd, J = 8.8, 6.7 Hz, 2H), 7.44 – 7.38 (m, 3H), 7.29 – 7.22 (m, 1H), 7.19 – 7.13 (m, 1H), 6.87 (dd, J = 7.1, 3.5 Hz, 1H), 5.49 (dd, J = 9.6, 3.9 Hz, 1H), 3.16 (dd, J = 14.8, 9.6 Hz, 1H), 2.80 (dd, J = 14.8, 4.0 Hz, 1H), 1.52 (s, 3H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 178.5, 143.4, 134.4, 130.7, 129.6, 128.2, 126.4, 123.2, 122.9, 122.6, 110.0, 69.9, 50.2, 47.3, 26.1. The corresponding other spectral data of this compound can be seen in reference literature.¹

3-(2,2-dichloroethyl)-1-ethyl-3-methylindolin-2-one (3e)

The reaction of 1e (37.4 mg, 0.2 mmol) and 2a (192.0 mg, 1.0 mmol) gave 3e as yellow oil (26.8 mg, 49%); The product was purified by flash column chromatography (petroleum ether/ethyl acetate = 20/1).

¹**H NMR** (400 MHz, Chloroform-*d*) δ 7.33 – 7.28 (m, 1H), 7.24 – 7.18 (m, 1H), 7.12 – 7.06 (m, 1H), 6.91 (t, *J* = 7.3 Hz, 1H), 5.40 (dd, *J* = 9.2, 4.2 Hz, 1H), 3.85 (m, 1H), 3.69 (m, 1H), 3.10 – 3.02 (m, 1H), 2.71 (dd, *J* = 14.8, 4.2 Hz, 1H), 1.39 (s, 3H), 1.25 (t, *J* = 7.2 Hz, 3H). ¹³**C NMR** (101 MHz, Chloroform-*d*) δ 178.6, 142.5, 131.3, 128.6, 122.8, 122.5, 108.8, 69.7, 49.9, 47.1, 34.8, 25.8, 12.2. HRMS (ESI) m/z calcd for C₁₃H₁₅Cl₂NONa⁺ (M+Na)⁺ 294.0423, found 294.0424. The corresponding

3-(2,2-dichloroethyl)-1-isopropyl-3-methylindolin-2-one (3f)

other spectral data of this compound can be seen in reference literature.⁴

The reaction of **1f** (47.4 mg, 0.2 mmol) and **2a** (192.0 mg, 1.0 mmol) gave **3f** as yellow oil (26.1mg, 46%); The product was purified by flash column chromatography (petroleum ether/ethyl acetate = 20/1).

¹**H NMR** (400 MHz, Chloroform-*d*) δ 7.60 (d, J = 3.0 Hz, 1H), 7.05 (m, 3H), 5.40 (dd, J = 9.2, 4.2 Hz, 1H), 4.71 – 4.58 (m, 1H), 3.04 (dd, J = 14.8, 9.2 Hz, 1H), 2.74 – 2.62 (m, 1H), 1.46 (dd, J = 7.1, 3.4 Hz, 8H), 1.37 (s, 3H). ¹³**C NMR** (101 MHz, Chloroform-*d*) δ 178.0, 142.5, 134.3, 128.3, 122.9, 122.1, 110.4, 70.3, 50.0, 46.9, 43.7, 26.8, 19.3, 18.9. HRMS (ESI) m/z calcd for C₁₄H₁₇Cl₂NONa⁺ (M+Na)⁺ 308.0579, found 308.0575. The corresponding other spectral data of this compound can be seen in reference literature.⁴

3-(2,2-dichloroethyl)-5-fluoro-1,3-dimethylindolin-2-one (3g)

The reaction of **1g** (38.6 mg, 0.2 mmol) and **2a** (192.0 mg, 1.0 mmol) gave **3g** as yellow oil (37.7 mg, 68%); The product was purified by flash column chromatography (petroleum ether/ethyl acetate = 20/1).

¹**H** NMR (400 MHz, Chloroform-*d*) δ 7.04 (dd, J = 8.8, 2.6 Hz, 1H), 6.99 (dd, J = 7.7, 2.6 Hz, 1H), 6.82 (dd, J = 8.5, 4.1 Hz, 1H), 5.44 (dd, J = 8.9, 4.6 Hz, 1H), 3.22 (s, 3H), 3.07 – 3.01 (m, 1H), 2.71 (dd, J = 14.9, 4.6 Hz, 1H), 1.42 (s, 3H). ¹³**C** NMR (101 MHz, Chloroform-*d*) δ 178.6, 159.9, 159.4, 139.2, 132.6, 132.1, 115.0, 114.8, 111.1, 110.8, 109.2, 109.1, 69.4, 49.9, 47.3, 46.8, 26.6, 25.0. The corresponding other spectral data of this compound can be seen in reference literature.¹

5-chloro-3-(2,2-dichloroethyl)-1,3-dimethylindolin-2-one (3h)

The reaction of **1h** (41.9 mg, 0.2 mmol) and **2a** (192.0 mg, 1.0 mmol) gave **3h** as yellow oil (48.9 mg, 84%); The product was purified by flash column chromatography (petroleum ether/ethyl acetate = 20/1).

¹**H** NMR (500 MHz, Chloroform-*d*) δ 7.30 (dd, J = 8.3, 2.1 Hz, 1H), 7.18 (d, J = 2.1 Hz, 1H), 6.80 (d, J = 8.3 Hz, 1H), 5.42 (dd, J = 9.0, 4.5 Hz, 1H), 3.20 (s, 3H), 3.03 (dd, J = 14.9, 9.0 Hz, 1H), 2.69 (dd, J = 14.9, 4.5 Hz, 1H), 1.39 (s, 3H). ¹³**C** NMR (101 MHz, Chloroform-*d*) δ 178.6, 142.0, 132.9, 128.6, 128.2, 123.3, 109.6, 69.4, 49.9, 47.5, 26.6, 25.5. The corresponding other spectral data of this compound can be seen in reference literature.¹

5-bromo-3-(2,2-dichloroethyl)-1,3-dimethylindolin-2-one (3i)

The reaction of **1i** (50.8 mg, 0.2 mmol) and **2a** (192.0 mg, 1.0 mmol) gave **3i** as yellow oil (43.6 mg, 65%); The product was purified by flash column chromatography (petroleum ether/ethyl acetate = 20/1).

¹**H** NMR (400 MHz, Chloroform-*d*) δ 7.45 (dd, J = 8.3, 2.0 Hz, 1H), 7.33 (d, J = 6.8 Hz, 1H), 6.76 (d, J = 8.5 Hz, 1H), 5.42 (dd, J = 9.1, 4.4 Hz, 1H), 3.19 (s, 3H), 3.07 – 2.99 (m, 1H), 2.69 (dd, J = 14.9, 4.5 Hz, 1H), 1.39 (s, 3H). ¹³**C** NMR (101 MHz, Chloroform-*d*) δ 178.6, 142.5, 132.5, 131.5, 125.9, 117.2, 110.1, 69.3, 49.9, 47.4, 26.6, 25.4. The corresponding other spectral data of this compound can be seen in reference literature.²

3-(2,2-dichloroethyl)-5-iodo-1,3-dimethylindolin-2-one (3j)

The reaction of 1j (60.2 mg, 0.2 mmol) and 2a (192.0 mg, 1.0 mmol) gave 3j as yellow oil (52.0 mg, 68%); The product was purified by flash column chromatography (petroleum ether/ethyl acetate = 20/1).

¹**H** NMR (400 MHz, Chloroform-*d*) δ 7.64 (dd, J = 8.2, 1.7 Hz, 1H), 7.33 (d, J = 2.4 Hz, 1H), 6.66 (d, J = 8.2 Hz, 1H), 5.40 (dd, J = 9.1, 4.3 Hz, 1H), 3.18 (s, 3H), 3.06 – 2.99 (m, 1H), 2.68 (dd, J = 14.8, 4.4 Hz, 1H), 1.39 (s, 3H). ¹³**C** NMR (101 MHz, Chloroform-*d*) δ 178.4, 143.1, 137.5, 133.6, 131.5, 110.7, 85.2, 69.4, 49.9, 47.3, 26.6, 25.5. The corresponding other spectral data of this compound can be seen in reference literature.²

3-(2,2-Dichloroethyl)-1,3-dimethyl-5-(trifluoromethyl) indolin-2-one (3k)

The reaction of **1k** (48.6 mg, 0.2 mmol) and **2a** (192.0 mg, 1.0 mmol) gave **3k** as yellow oil (49.8mg, 77%);The product was purified by flash column chromatography (petroleum ether/ethyl acetate = 20/1). **¹H NMR** (400 MHz, Chloroform-*d*) δ 7.64 – 7.59 (m, 1H), 7.43 (d, *J* = 1.8 Hz, 1H), 6.95 (d, *J* = 8.2 Hz, 1H), 5.39 (dd, *J* = 8.9, 4.6 Hz, 1H), 3.25 (s, 3H), 3.08 – 3.03 (m, 1H), 2.75 (dd, *J* = 14.9, 4.6 Hz, 1H), 1.43 (s, 3H).¹³C NMR (101 MHz, Chloroform-*d*) δ 179.1, 146.3, 132.4, 129.7,127.7,126.8 126.5, 125.6, 125.3, 122.8, 119.8,119.3, 108.5, 69.2, 49.8, 47.2, 26.7, 25.5. The corresponding other spectral data of this compound can be seen in reference literature.¹

ethyl 3-(3,3-2,2-dichloroethyl)-1,3-dimethyl-2-oxoindoline-5-carboxylate (31)

The reaction of **11** (49.4 mg, 0.2 mmol) and **2a** (192.0 mg, 1.0 mmol) gave **3l** as yellow oil (27.7mg, 42%); The product was purified by flash column chromatography (petroleum ether/ethyl acetate = 20/1).

¹**H** NMR (400 MHz, Chloroform-d) δ 8.02 (dd, J = 8.2, 1.7 Hz, 1H), 7.80 (dd, J = 7.7, 1.6 Hz, 1H), 6.85 (d, J = 8.2 Hz, 1H), 5.32 (dd, J = 9.5, 4.1 Hz, 1H), 4.33 (m, 2H), 3.18 (s, 2H), 3.00 (dd, J = 14.9, 9.2 Hz, 1H), 2.71 (dd, J = 14.9, 4.3 Hz, 1H), 1.40 – 1.30 (m, 6H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 179.3, 166.3, 147.5, 131.3, 130.8, 125.0, 123.9, 108.1, 69.5, 61.1, 49.9, 47.0, 26.7, 25.5, 14.4. The corresponding other spectral data of this compound can be seen in reference literature.³

3-(2,2-dichloroethyl)-1,3,5-trimethylindolin-2-one (3m)

The reaction of 1m (37.8 mg, 0.2 mmol) and 2a (192.0 mg, 1.0 mmol) gave 3m as yellow oil (47.2 mg, 87%); The product was purified by flash column chromatography (petroleum ether/ethyl acetate = 20/1).

¹**H NMR** (400 MHz, Chloroform-*d*) δ 7.36 – 7.31 (m, 1H), 7.09 (d, *J* = 7.7 Hz, 1H), 6.76 – 6.69 (m, 1H), 5.29 (dd, *J* = 9.9, 3.7 Hz, 1H), 3.25 (s, 3H), 3.09 (dd, *J* = 15.4, 10.0 Hz, 1H), 2.96 (dd, *J* = 14.9, 3.9 Hz, 1H), 1.49 (s, 3H). ¹³**C NMR** (101 MHz, Chloroform-*d*) δ 179.3, 141.1, 132.4, 131.0, 128.9, 123.5, 108.4, 69.7, 50.1, 47.3, 26.5, 25.5, 21.2. The corresponding other spectral data of this compound can be seen in reference literature.¹

3-(2,2-dichloroethyl)-5-methoxy-1,3-dimethylindolin-2-one (3n)

The reaction of 1n (41.0 mg, 0.2 mmol) and 2a (192.0 mg, 1.0 mmol) gave 3n as yellow oil (34.2 mg, 62%); The product was purified by flash column chromatography (petroleum ether/ethyl acetate = 20/1).

¹**H NMR** (400 MHz, Chloroform-*d*) δ 6.87 – 6.76 (m, 3H), 5.42 (dd, J = 9.1, 4.2 Hz, 1H), 3.82 (s, 3H), 3.19 (s, 3H), 3.02 (dd, J = 9.7, 5.1 Hz, 1H), 2.68 (dd, J = 14.9, 4.2 Hz, 1H), 1.39 (s, 3H). ¹³**C NMR** (101 MHz, Chloroform-*d*) δ 178.8, 156.2, 136.9, 132.5, 112.4, 110.5, 108.9, 69.6, 55.9, 50.1, 47.6, 26.6, 25.5. The corresponding other spectral data of this compound can be seen in reference literature.¹

3-(2,2-dichloroethyl)-1,3-dimethyl-5- (trifluoromethoxy) indolin-2-one (30)

The reaction of **10** (51.8 mg, 0.2 mmol) and **2a** (192.0 mg, 1.0 mmol) gave **30** as yellow oil (58.4 mg, 85%); The product was purified by flash column chromatography (petroleum ether/ethyl acetate = 20/1).

¹**H NMR** (500 MHz, Chloroform-*d*) δ 7.30 (dd, J = 8.3, 2.1 Hz, 1H), 7.18 (d, J = 2.1 Hz, 1H), 6.80 (d, J = 8.3 Hz, 1H), 5.42 (dd, J = 9.0, 4.5 Hz, 1H), 3.20 (s, 3H), 3.03 (dd, J = 14.9, 9.0 Hz, 1H), 2.69 (dd, J = 14.9, 4.5 Hz, 1H), 1.39 (s, 3H). ¹³**C NMR** (101 MHz, Chloroform-*d*) δ 178.7, 144.8, 142.0, 129.8, 127.7, 121.8, 116.9, 109.1, 69.2, 49.9, 47.5, 26.7, 25.4. The corresponding other spectral data of this compound can be seen in reference literature.¹

3-(2,2-dichloroethyl)-5-isopropyl-1,3-dimethylindolin-2-one (3p)

The reaction of **1p** (43.4 mg, 0.2 mmol) and **2a** (192.0 mg, 1.0 mmol) gave **3p** as yellow oil (54.2mg, 90%); Purification by flash column chromatography (petroleum ether/ethyl acetate = 20/1);

¹**H NMR** (400 MHz, Chloroform-*d*) δ 7.36 – 7.31 (m, 1H), 7.09 (d, J = 7.7 Hz, 1H), 6.76 – 6.69 (m, 1H), 5.29 (dd, J = 9.9, 3.7 Hz, 1H), 3.25 (s, 3H), 3.09 (dd, J = 15.4, 10.0 Hz, 1H), 2.96 (dd, J = 14.9, 3.9 Hz, 1H), 1.49 (s, 3H). ¹³**C NMR** (101 MHz, Chloroform-*d*) δ 179.3, 147.5, 131.3, 130.8, 129.7, 123.9, 108.1, 69.5, 49.9, 47.0, 26.7, 25.5, 21.0, 14.4, 14.2. **HRMS** (ESI) m/z calcd for C₁₅H₁₉Cl₂NONa⁺ (M+Na)⁺ 322.0736, found 322.0735. **Molecular formula** C₁₅H₁₉Cl₂NO' requires C, 63.3; H, 4.3; N, 5.9%'.

7-chloro-3-(2,2-dichloroethyl)-1,3-dimethylindolin-2-one (3q)

The reaction of 1q (41.9 mg, 0.2 mmol) and 2a (192.0 mg, 1.0 mmol) gave 3q as yellow oil (14.8 mg, 25%); The product was purified by flash column chromatography (petroleum ether/ethyl acetate = 20/1).

¹**H** NMR (400 MHz, Chloroform-*d*) δ 7.24 (dd, J = 8.2, 1.5 Hz, 1H), 7.07 (dd, J = 7.3, 1.3 Hz, 1H), 7.04 – 7.00 (m, 1H), 5.39 (dd, J = 9.0, 4.5 Hz, 1H), 3.58 (s, 4H), 3.03 (dd, J = 14.8, 9.0 Hz, 1H), 2.68 (dd, J = 14.9, 4.5 Hz, 1H), 1.39 (s, 3H). ¹³**C** NMR (101 MHz, Chloroform-*d*) δ 179.3, 139.3, 133.9, 130.9, 123.5, 121.2, 116.3, 69.4, 50.2, 47.0, 29.9, 25.8. The corresponding other spectral data of this compound can be seen in reference literature.¹

3-(2,2-dichloroethyl)-1,3,7-trimethylindolin-2-one (3r)

The reaction of 1r (37.8 mg, 0.2 mmol) and 2a (192.0 mg, 1.0 mmol) gave 3r as yellow oil (47.5 mg, 87%); The product was purified by flash column chromatography (petroleum ether/ethyl acetate = 20/1).

¹**H NMR** (400 MHz, Chloroform-*d*) δ 7.07 – 6.97 (m, 3H), 5.37 (dd, J = 9.4, 4.0 Hz, 1H), 3.48 (s, 3H), 3.06 – 2.99 (m, 1H), 2.71 – 2.60 (m, 1H), 2.58 (s, 3H), 1.37 (s, 3H). ¹³**C NMR** (101 MHz, Chloroform-*d*) δ 179.6, 141.1, 132.4, 131.7, 122.7, 120.5, 117.2, 69.8, 50.4, 46.5, 29.8, 25.8, 19.1. The corresponding other spectral data of this compound can be seen in reference literature.¹

3-(2,2-dichloroethyl)-1,3,4-trimethylindolin-2-one (3t)

The reaction of 1t (37.8 mg, 0.2 mmol) and 2a (192.0 mg, 1.0 mmol) gave 3t as yellow oil (35.7 mg, 66%); The product was purified by flash column chromatography (petroleum ether/ethyl acetate = 20/1).

¹**H** NMR (400 MHz, Chloroform-*d*) δ 7.15 – 7.09 (m, 1H), 7.00 (d, J = 1.6 Hz, 1H), 6.75 (d, J = 3.4 Hz, 1H), 5.39 (dd, J = 9.4, 4.0 Hz, 1H), 3.19 (s, 3H), 3.05 – 2.99 (m, 1H), 2.68 (dd, J = 14.8, 4.0 Hz, 1H), 2.37 (s, 3H), 1.38 (s, 3H). ¹³**C** NMR (101 MHz, Chloroform-*d*) δ 179.3, 141.4, 134.1, 132.5, 129.8, 128.9, 108.5, 69.7, 50.1, 47.4, 26.6, 25.5, 21.2. The corresponding other spectral data of this compound can be seen in reference literature.¹

1,3-dimethyl-3-(3,3,3-triiodo-3⁶-prop-2-yn-1-yl)indolin-2-one (3u)

The reaction of **1a** (35.0 mg, 0.2 mmol) and **2b** (4ml) gave **3u** as yellow oil (58.2mg, 79%); The product was purified by flash column chromatography (petroleum ether/ethyl acetate = 20/1).

¹**H NMR** (400 MHz, Chloroform-*d*) δ 7.36 – 7.30 (m, 2H), 7.07 (t, *J* = 7.6 Hz, 1H), 6.88 (d, *J* = 7.9 Hz, 1H), 3.74 – 3.65 (m, 1H), 3.34 (d, *J* = 15.3 Hz, 1H), 3.24 (s, 3H), 1.40 (s, 3H). ¹³**C NMR** (101 MHz, Chloroform-*d*) δ 178.7, 143.3, 129.7, 128.5, 125.7, 122.1, 108.4, 96.1, 59.8, 48.0, 26.8, 26.6. The corresponding other spectral data of this compound can be seen in reference literature.¹

3-(2,2-Dibromoethyl)-1,3-dimethylindolin-2-one (3v) and 3-(2-Bromoethyl)-1,3-dimethylindolin-2-one (3w)

The reaction of **1a** (35.0 mg, 0.2 mmol) and **2c** (4ml) gave **3v**, **3w** as yellow oil (41.2mg, 67%, 2:1); The product was purified by flash column chromatography (petroleum ether/ethyl acetate = 20/1).

¹**H NMR** (400 MHz, Chloroform-*d*) δ 7.31 – 7.28 (m, 0.75H), 7.25 (d, J = 1.2 Hz, 0.29H), 7.19 (m, 1H), 7.14 – 7.08 (m, 1H), 6.89 – 6.84 (m, 1H), 5.30 (dd, J = 9.5, 4.3 Hz, 0.31H), 3.28 (dd, J = 15.1, 9.6 Hz, 0.29H), 3.22 (s, 2H), 3.21 (s, 1H), 3.10–2.93 (m, 2H), 2.52 (m, J = 13.6, 11.2, 5.9 Hz, 0.75H), 2.31 (m, J = 13.6, 11.3, 4.8 Hz, 0.78H), 1.39 (s, 2H), 1.38 (s, 1H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 179.6, 179.0, 143.1, 142.9, 132.4, 129.7, 128.8, 128.3, 122.6, 121.9, 108.8, 108.4, 51.5, 50.1, 48.6, 41.1, 40.5, 27.2, 26.5, 26.3, 25.5, 23.8. The corresponding other spectral data of this compound can be seen in reference literature.¹

5. References

- Y. Liu, J.-L. Zhang, R.-J. Song and J.-H. Li, 1,2-Alkylarylation of activated alkenes with dual C-H bonds of arenes and alkyl halides toward polyhalo-substituted oxindoles, Org. Chem. Front., 2014, 1, 1289.
- 2 Y.-F. Tian and Z.-Q. Liu, Metal-free radical cascade dichloromethylation of activated alkenes using CH₂Cl₂: highly selective activation of the C–H bond, RSC Adv., 2014, 4, 64855.
- 3 X.-Q. Li, J. Xu, Y.-Z. Gao, H. Fang and Y.-F. Zhao, Cascade Arylalkylation of Activated Alkenes: Synthesis of Chloro- and Cyano-Containing Oxindoles, J. Org. Chem., 2015, 80, 2621.
- 4 M.-Z. Lu and T.-P. Loh, Iron-Catalyzed Cascade Carbochloromethylation of Activated Alkenes: Highly Efficient Access to Chloro-Containing Oxindoles, Org. Lett., 2014, 16, 4698.
- 5 P. Xiong, H.-H. Xu, and H.-C. Xu, Metal- and Reagent-Free Intramolecular Oxidative Amination of Tri- and Tetrasubstituted Alkenes, J. Am. Chem. Soc., 2017, **139**, 2956.

6. NMR spectra

¹H NMR-spectrum (400MHz, CDCl₃) of 3a

¹³C NMR-spectrum (101MHz, CDCl₃) of 3a

¹H NMR-spectrum (400MHz, CDCl₃) of 3c

¹³C NMR-spectrum (101MHz, CDCl₃) of 3c

¹H NMR-spectrum (400MHz, CDCl₃) of 3d

¹³C NMR-spectrum (101MHz, CDCl₃) of 3d

¹H NMR-spectrum (400MHz, CDCl₃) of 3e

¹³C NMR-spectrum (101MHz, CDCl₃) of 3e

¹H NMR-spectrum (400MHz, CDCl₃) of 3f

¹³C NMR-spectrum (101MHz, CDCl₃) of 3f

¹H NMR-spectrum (400MHz, CDCl₃) of 3g

¹³C NMR-spectrum (101MHz, CDCl₃) of 3g

¹H NMR-spectrum (400MHz, CDCl₃) of 3h

¹³C NMR-spectrum (101MHz, CDCl₃) of 3h

¹H NMR-spectrum (400MHz, CDCl₃) of 3i

¹³C NMR-spectrum (101MHz, CDCl₃) of 3i

¹H NMR-spectrum (400MHz, CDCl₃) of 3j

¹³C NMR-spectrum (101MHz, CDCl₃) of 3j

¹H NMR-spectrum (400MHz, CDCl₃) of 3k

¹H NMR-spectrum (400MHz, CDCl₃) of 3l

¹H NMR-spectrum (400MHz, CDCl₃) of 3m

¹³C NMR-spectrum (101MHz, CDCl₃) of 3m

¹H NMR-spectrum (400MHz, CDCl₃) of 3n

¹³C NMR-spectrum (101MHz, CDCl₃) of 3n

¹H NMR-spectrum (400MHz, CDCl₃) of 30

¹³C NMR-spectrum (101MHz, CDCl₃) of 30

¹H NMR-spectrum (400MHz, CDCl₃) of 3p

¹³C NMR-spectrum (101MHz, CDCl₃) of 3p

¹H NMR-spectrum (400MHz, CDCl₃) of 3q

¹³C NMR-spectrum (101MHz, CDCl₃) of 3q

¹H NMR-spectrum (400MHz, CDCl₃) of 3r

¹³C NMR-spectrum (101MHz, CDCl₃) of 3r

¹H NMR-spectrum (400MHz, CDCl₃) of 3s

¹³C NMR-spectrum (101MHz, CDCl₃) of 3s

¹H NMR-spectrum (400MHz, CDCl₃) of 3t

¹³C NMR-spectrum (101MHz, CDCl₃) of 3t

¹H NMR-spectrum (400MHz, CDCl₃) of 3v, 3w

¹³C NMR-spectrum (101MHz, CDCl₃) of 3v,3w

