Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2023

Electronic Supplementary Information

Efficient electroreduction of CO₂ to syngas over ZIF-8 derived

oxygen vacancy-rich ZnO nanomaterials

Jie Yang,^a Hui Wang,^a Han Yang,^a Weiwei Dong,^{*b} Mingqi Gao,^c Guangying Zhou,^a Haiying Tian,^c Renjie Zhang,^a Jiqiang Wan,^{*c} and Dexin Yang^{*a}

^aGreen Catalysis Center, College of Chemistry, Zhengzhou University, Zhengzhou, Henan 450001, China.

^bBeijing Synchrotron Radiation Facility, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, 100049, China.

^cTechnology Center, China Tobacco Henan Industry Co., Ltd, 450000, Zhengzhou, Henan, China

*E-mail: yangdx@zzu.edu.cn; dongww@ihep.ac.cn; wanjiqiang1114@163.com

Experimental Section

Chemicals

Zinc nitrate hexahydrate (Zn(NO₃)₂·6H₂O), 2-methylimidazole, ethanol, and acetonitrile were purchased from Kermel Chemical Reagent Co., Ltd. Acetone was obtained from Sinopharm Chemical Reagent Co., Ltd., P. R. China. Polyethylene oxidepolypropylene oxide-polyethylene (PEO-PPO-PEO, P123) was purchased from Beijing Innochem Technology Co., Ltd. Toray Carbon Paper (TGP-H-60, 19 × 19 cm), tetrabutylammonium bromide (TBAB), Nafion D-521 dispersion (5% w/w in water and 1-propanol), and Nafion N-117 membrane (0.180 mm thick, \geq 0.90 meg/g exchange capacity) were purchased from Alfa Aesar China Co., Ltd. CO₂ (99.999%) and N₂ (99.99%) were obtained from Henan Yumeng Technology Co., Ltd. 1-Butyl-3methylimidazolium hexafluorophosphate ([Bmim]PF₆) was supplied by the Centre of Green Chemistry and Catalysis, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences.

Characterization

The microstructures of ZnO-d and ZnO-n were analyzed by scanning electron microscopy (Care Zeiss SIGMA 500) and transmission electron microscopy (JEOL JEM-2100F) equipped with energy dispersive X-ray spectrometer (EDS). The crystal structures of different ZIF-8 and ZnO were measured by X-ray diffractometer (X'Pert PRO) with the Cu-K α radiation ($\lambda = 0.15406$ nm), the scanning speed was 5° min⁻¹. The valence states of the elements on ZnO-d and ZnO-n surfaces were investigated by X-ray photoelectron spectroscopy (XPS, Thermo Scientific ESCALab 250Xi) using 200 W Al-K α source. The base pressure in the analysis chamber was 3 × 10⁻¹⁰ mbar. And the electron binding energies of samples were corrected using the C 1s line at 284.8 eV from adventitious carbon.

Catalysts preparation

Synthesis of ZIF-8 with different morphologies: According to literature reported,¹ 1.05 g of Zn(NO₃)₂·6H₂O, 1.16 g of 2-methylimidazole, and 3.01 g of TBAB were added to a 100 mL round bottom flask, and the mixture was heated at 60 °C. After 1 h stirring, a colorless and transparent solution was obtained. An appropriate amount of H_2O was added into the round bottom flask, and then the transparent solution became turbid. The obtained mixture was separated by centrifugation and the precipitate was washed alternately with H_2O and ethanol for three times. Finally, the product was dried at 60 °C in a vacuum drying oven for 12 h to obtain ZIF-8 nanostructures with dodecahedral morphology (ZIF-8-d). The synthesis procedure of ZIF-8 nanoparticles (ZIF-8-n) is the same with that of ZIF-8-d, except that 3.01g of TBAB was replaced by 0.1 g of P123.

Synthesis of ZnO-d and ZnO-n nanomaterials: The above-mentioned two ZIF-8 nanostructures with different morphologies were ground and annealed at 600 °C for 2 h under air condition. When the temperature naturally cooled down to room temperature, the different ZnO were obtained. The ZnO-d and ZnO-n were derived from ZIF-8-d and ZIF-8-n, respectively.

Electrode preparation: 50 mg of ZnO-d or ZnO-n and 1 mg of carbon black (Vulcan XC 72) were added to a mixed solution of 3 mL of acetone and 30 μ L of Nafion D-521 (5 wt%), and the mixture were ultrasonicated for 30 min. After a homogeneous suspension was formed, 0.3 mL of the above suspension was dropped onto a carbon paper substrate (1 × 1 cm²) and dried at room temperature. The loading mass of ZnO-n or ZnO-d nanomaterials on carbon paper is about 5 mg cm⁻².

Electrochemical experiment: The electrochemical experiments were all carried out on the CHI 6081E electrochemical workstation. The LSV scans and electrolysis experiments were performed in a typical H-type cell with a three-electrode system, in which the above-mentioned electrode was used as working electrode, platinum gauze (Pt) was employed as the counter electrode, and Ag/Ag⁺ (0.01 M AgNO₃ and 0.1 M TBAP in acetonitrile) was used as the reference electrode. In the experiment, a proton exchange membrane (Nafion-117) was used to separate the cathode compartment filled with electrolyte of [Bmim]PF₆ (30 wt%)/acetonitrile/H₂O (5 wt%) and anode compartment filled with electrolyte of H₂SO₄ solution (0.5 M). In each experiment, the amount of electrolyte was 25 mL. Before the electrolysis experiment, the catholyte was purged by CO₂ for about 30 min to form a CO₂-saturated electrolyte. During the electrolysis process, slight magnetic stirring was used under a steady stream of CO₂ (20 sccm) to obtain uniform electrolytes. LSV curves were tested in CO₂- or N₂-saturated [Bmim]PF₆ (30 wt%)/acetonitrile/H₂O (5 wt%) electrolytes over a potential range of -1.0 V to -2.5 V vs. Ag/ Ag⁺ with a scan rate of 20 mV s⁻¹.

Product analysis: During the electrolysis reaction, gaseous products were analyzed using a gas chromatograph (Agilent 8860) equipped with a thermal conductivity detector (TCD) and a flame ionization detector (FID). In addition, the liquid products were detected using ¹H NMR spectrometer (Bruker Avance III 600 HD) in DMSO-d₆. Then, the FE of different products was calculated according to the corresponding amount of gaseous and liquid products.²

EIS measurement: EIS was measured under an open circuit potential condition in $[Bmim]PF_6$ (30 wt%)/acetonitrile/H₂O (5 wt%) ternary electrolyte with an amplitude of 5 mV and the frequency of 10^{-2} ~ 10^5 Hz.

*C*_{dl} measurement: The ECSA value is proportional to the value of C_{dl} .^{3, 4} The value of C_{dl} was determined by measuring the capacitive current related to double-layer charging from the scan-rate dependence of cyclic voltammogram (CV). The CV scans were measured with various scan rates over a potential range of -1.6 to -1.7 V vs. Ag/Ag⁺ in a H-type cell. The value of C_{dl} was estimated by plotting the peak current density (*j*) at -1.65 V vs. Ag/Ag⁺ against the square root of scan rates.

Fig. S1. XRD patterns of ZIF-8-d and ZIF-8-n.

Fig. S2. SEM image of ZIF-8-d.

Fig. S3. SEM image of ZIF-8-n.

In Figs. S3a and b, some hollow spheres, spheres, and dispersive nanoparticles are observed in ZIF-8-n, and the homogeneity of ZIF-8-n is poor. Meanwhile, it can observe that these hollow spheres and spheres are made up of many nanoparticles, so we think that the ZIF-8-n is mainly composed of many irregular nanoparticles.

Fig. S5. SEM image of ZnO-n.

Fig. S6. XRD pattern of ZnO-1.

Fig. S7. LSV curves on ZnO-n and ZnO-d in the CO₂- or N₂-saturated [Bmim]PF₆ (30 wt%)/acetonitrile/H₂O (5 wt%) ternary electrolyte.

Fig. S8 The current density, maximum CO FE, and H₂ FE over ZnO-n (at -1.9 V vs. Ag/Ag⁺), ZnO-d (at -2.1 V vs. Ag/Ag⁺), ZnO-1 (at -1.9 V vs. Ag/Ag⁺), and ZnO-2 (at -1.9 V vs. Ag/Ag⁺).

Fig. S9 The i-t curves and FE of CO and H_2 over ZnO-n (a) and ZnO-1 (b).

Fig. S10 (a) LSV curve on ZnO-n in the CO₂-saturated 0.5 M KHCO₃ electrolyte; (b)
FEs of CO, H₂ and current density on ZnO-n at different applied potentials; (c) CO
partial current density at different applied potentials for ZnO-n; (d) The volume ratios between CO and H₂ at the applied potentials.

Catalyst	Electrolyte	Potential /V vs. RHE	CO: H ₂ ratio	FEco	Refs
Defective ZnO	0.5 M KOH	−0.6 ~ −1.1 V vs. RHE	~1:7~2:1	50%	[5]
Zn/Cu foam	0.5 M KHCO3	$-0.6 \sim -1.3$ V vs. RHE	~1:5–2.3:1	40%	[6]
ZnO	0.1 M KHCO3	$-0.7\sim-1.6$ V vs. RHE	~1:3.6–2.1:1	~70%	[7]
CuZnO/CNT	0.1 M KHCO3	$-0.4 \sim -1.2 \ \mathrm{V} \ \mathrm{vs.} \ \mathrm{RHE}$	~1:6.3–1:1	50%	[8]
Zn–Cu alloyed	0.1 M CsHCO3	$-0.8\sim-1.2$ V vs. RHE	~1:3.7–5:1	27%	[9]
Zn/Ni	0.1 M KCl	$-0.8 \sim -2.4$ V vs. RHE	~1.22:1	55%	[10]
Zn _x Cd _{1-x} S-Amine	0.5 M NaHCO ₃	$-0.76 \sim -1.16$ V vs. RHE	~0–19.7:1	~80%	[11]
CuZnAl-Oxide	0.1 M KHCO3	$-0.89 \sim -1.89$ V vs. RHE	~1:2–1:5	25%	[12]
oxide-derived Zn	0.5 M KHCO ₃	$-0.7\sim-1.1$ V vs. RHE	~1:3.3–1.1:1	55%	[13]
ZnCu	0.5 M KHCO3	$-1.0 \sim -1.8$ V vs. RHE	~1:4–0.74:1	47.2%	[14]
defective ZnO doped	0.5 M KHCO3	$-0.8\sim-1.3$ V vs. RHE	~1:1.5–2.7:1	71%	[15]
carbon					
Zn film	0.5 M KHCO3	$-0.67 \sim -1.27$ V vs. RHE	~1:11.1–11.4:1	92.6%	[16]
Zn/ZnO _{NR}	0.1 M NaHCO ₃	$-0.58 \sim -1.38$ V vs. RHE	~1:4.5–4:1	62.7%	[17]
ZnO-d, ZnO-n	[Bmim]PF ₆ (30	$-1.7\sim-2.2~V~vs.~Ag/Ag^{+}$	~1:3-8.5:1	73.2%	This
	wt%)/acetonitrile				Work
	/H ₂ O (5 wt%)				

Table S1 Summary of the catalytic performance of Zn-based electrocatalysts for CO₂to-syngas conversion.

[Bmim]PF ₆ concentration (wt%)	Current density	FEco	FE _{H2}	V_{CO}/V_{H2}
20	3.7 mA cm^{-2}	39.4%	44.8%	0.88
30	9.8 mA cm^{-2}	73.2%	8.6%	8.5
40	2.4 mA cm^{-2}	50.5%	34.8%	1.5

Table S2 The effect of $[Bmim]PF_6$ concentration in the electrolyte for CO_2 electroreduction on ZnO-n at -1.9 V vs. Ag/Ag⁺.

References

1. Y. Pan, D. Heryadi, F. Zhou, L. Zhao, G. Lestari, H. Su and Z. Lai, *CrystEngComm*, 2011, **13**, 6937.

2. C. Chen, X. Sun, X. Yan, Y. Wu, H. Liu, Q. Zhu, B. B. A. Bediako and B. Han, *Angew. Chem. Int. Ed.*, 2020, **59**, 11123-11129.

3. S. Gao, Y. Lin, X. Jiao, Y. Sun, Q. Luo, W. Zhang, D. Li, J. Yang and Y. Xie, *Nature*, 2016, **529**, 68-71.

4. X. Kang, L. Li, A. Sheveleva, X. Han, J. Li, L. Liu, F. Tuna, E. J. L. McInnes, B. Han, S. Yang and M. Schroder, *Nat. Commun.*, 2020, **11**, 5464.

5. R. Daiyan, E. C. Lovell, B. Huang, M. Zubair, J. Leverett, Q. Zhang, S. Lim, J. Horlyck, J. Tang, X. Lu, K. Kalantar-Zadeh, J. N. Hart, N. M. Bedford and R. Amal, *Adv. Energy Mater.*, 2020, **10**, 2001381.

6. B. Qin, Y. Li, H. Fu, H. Wang, S. Chen, Z. Liu and F. Peng, *ACS Appl. Mater. Interfaces*, 2018, **10**, 20530-20539.

7. B. Qin, Q. Zhang, Y. H. Li, G. Yang and F. Peng, *ACS Appl. Mater. Interfaces*, 2020, **12**, 30466-30473.

8. I. Hjorth, M. Nord, M. Rønning, J. Yang and D. Chen, Catal. Today, 2020, 357, 311-321.

9. S. Lamaison, D. Wakerley, D. Montero, G. Rousse, D. Taverna, D. Giaume, D. Mercier, J. Blanchard, H. N. Tran, M. Fontecave and V. Mougel, *ChemSusChem*, 2019, **12**, 511-517.

10. M. Beheshti, S. Kakooei, M. C. Ismail and S. Shahrestani, *Electrochim. Acta*, 2020, 341, 135976.

11. N. Meng, C. Liu, Y. Liu, Y. Yu and B. Zhang, Angew. Chem. Int. Ed., 2019, 58, 18908-18912.

12. H. Guzman, D. Roldan, A. Sacco, M. Castellino, M. Fontana, N. Russo and S. Hernandez, *Nanomaterials (Basel)*, 2021, **11**, 3052.

13. K. Han, P. Ngene and P. de Jongh, ChemCatChem, 2021, 13, 1998-2004.

14. K. Malik, B. M. Rajbongshi and A. Verma, J. CO₂ Util., 2019, 33, 311-319.

15. C. Ma, X. Zou, A. Li, Z. Gao, L. Luo, S. Shen, J. Zhang, Z. Huang and L. Zhu, *Electrochim*. *Acta*, 2022, **411**, 140098.

16. P. Li, J. Liu, J. Bi, Q. Zhu, T. Wu, J. Ma, F. Zhang, J. Jia and B. Han, *Green Chem.*, 2022, **24**, 1439-1444.

17. J. Young Maeng, J. Hyun Yang, H. Ji Jang, M. Hee Joo, Y. Jun Kim, C. Kyun Rhee and Y. Sohn, *Appl. Surf. Sci.*, 2023, **609**, 155349.