Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2023

Support information

Radiation synthesis of imidazolium ionic liquid grafted PVDF as anion exchange membrane for vanadium redox flow battery

Zhiguo Wang^{a,b}, Jiali Jiang^{a,c}, Zhen Dong^a, Yifei Song^{a,c}, Long Zhao^{a*}

^a State Key Laboratory of Advanced Electromagnetic Engineering and Technology, School of Electrical and Electronic Engineering, Huazhong University of Science and Technology, Wuhan 430074, China.

^bChina-EU Institute for Clean and Renewable Energy, Huazhong University of Science and Technology, Wuhan 430074, China.

^c School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China.

*Corresponding author at: School of Electrical and Electronic Engineering, Huazhong University of Science and Technology, Wuhan 430074, China.

E-mail address: zhaolong@hust.edu.cn; ryuuchou@hotmail.com.

FIGURES:

Fig. S1. The test mold of ionic conductivity.

Fig. S2. The XRD spectra of the neat PVDF membrane.

Fig. S3. The XRD spectra of the PVDF-g-IL membranes.

Fig. S4. The TGA curves of PVDF and PVDF-g-IL powders.

Fig. S5. The weight loss of the grafted membranes after ethanol treatment.

Fig. S6. (a)The EIS curves and (b)the enlarged EIS curves and the equivalent circuit model of the PVDF-g-IL membranes and Nafion117.

Fig. S7. The EEs (a) and VEs (b) of the PVDF-g-IL (GY=25% and 59%) membrane and Nafion117.

TABLE:

	Table S1 The comparation of some AEMs in other works.					
le	WU	IEC	Ion conductivity	permeability		

Sampla	WU	IEC	Ion conductivity permeability		rafe	
Sample	(%)	(mmol/g)	(mS/cm)	$(\times 10^{-7} \text{ cm/min})$	1015	
PVDF-g-IL(GY=25%)	12.10	1.49	9.05	0.98	This work	
PVDF-g-IL(GY=59%)	9.31	1.68	30.43	0.57	This work	
DQA-TAPFE-20	18.2	1.55	10.1	0.031	[1]	
QA-PAE-20	17.4	1.61	7.2	0.32	[2]	
PBI-GTA-112%	30	2.4	9.68	2.18	[3]	
ETFE-g-	21.5	17		0.05	[4]	
PDMAEMA40	21.5	1./	-	0.05	[4]	
PSf-PhBIm1.2	25.3	1.32	12.7	8.52	[5]	

Table S2 The efficiency performance comparison of PVDF-IL(GY=25%) membrane with the

• •	•	1	1	F < 7
commercial	anion_eve	hange	membranec	161
commercial	amon-cac	nange	memoranes	101.
		0		L

	Thickness (µm)	Ion conductivity	Permeability		VE (%)	EE (%)
Sample		(mS/cm)	(×10 ⁻⁷ cm / min)	CE (%)		
FAP-PP-475	70	17.8	22.4	92.6	85	78.7
FAP-PE-420	20	5	11.6	91.0	86	78.0
APS	150	176	2.5	89.3	87	77.7
PVDF-IL(GY=25%)	123	9.05	0.98	98.25	84.10	82.63

Material	Unit price	Required amount	Cost
[VEIm][BF ₄]	\$72.8 / 100g	60g	\$43.68
PVDF	\$37.8 / kg	40g	\$1.52
Ethanol	\$1 / 500ml	1000ml	\$2
NMP	\$4 / L	500ml	\$2
Radiation	\$500-700 / ton	40 g PVDF	\$0.02-0.028
	Overall		\$49.22-\$49.228

Table S3. The cost of the material and radiation for preparing 1 m² membrane

Reference

[1] Y. Chen, Y. Li, J. Xu, S. Chen and D. Chen, ACS Applied Materials & Interfaces, 2021, 13, 18923-18933.

[2] Y. Hu, B. Wang, X. Li, D. Chen and W. Zhang, Journal of Power Sources, 2018, 387, 33-42.

[3] Y. Du, L. Gao, L. Hu, M. Di, X. Yan, B. An and G. He, Journal of Membrane Science, 2020, 603.

[4] J. Qiu, M. Li, J. Ni, M. Zhai, J. Peng, L. Xu, H. Zhou, J. Li and G. Wei, Journal of Membrane Science, 2007, 297, 174-180.

[5] Y. Xing, K. Geng, X. Chu, C. Wang, L. Liu and N. Li, Journal of Membrane Science, 2021, 618, 118696.

[6] G.-J. Hwang, S.-W. Kim, D.-M. In, D.-Y. Lee and C.-H. Ryu, Journal of Industrial and Engineering Chemistry, 2018, 60, 360-365.