Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2023

Supporting information

Assemblies of Salts of Urea and Thiourea Derivatives and Release of Host from Composites with Calcium oxide

Rinki Brahma and Jubaraj Bikash Baruah*

Figure and Table captions

Table 1Sa.	Crystallographic parameters of the urea/thiourea derivatives and their salts
Table 1Sb.	Crystallographic parameters of the urea/thiourea derivatives and their salts
Table S2.	Hydrogen-bond parameters in the urea/thiourea derivatives and corresponding perchlorate and nitrate salts.
Figure S1.	IR-spectra of the solid samples of (a) (i) phenurea. H_2O , (ii) Hphenurea. ClO_4 , (b) (i) naphurea. H_2O , (ii) Hnaphurea. ClO_4 . H_2O , (iii) Hnaphurea. NO_3 ; (c) (i) naphthiourea, (ii) Hnaphthiourea ClO_4.
Figure S2.	ESI mass of the (a) <i>phenurea</i> , (b) <i>phenthiourea</i> , (c) <i>naphurea</i> and (d) <i>naphthiourea</i> .
Figure S3.	UV-vis spectra of solid samples of (a) phenurea. H_2O ($\lambda_{max} = 291 \text{ nm}$), Hphenurea. ClO_4 ($\lambda_{max} = 309 \text{ nm}$), (b) (i) phenthiourea ($\lambda_{max} = 295 \text{ nm}$), (ii) Hphenthiourea. ClO_4 ($\lambda_{max} = 307 \text{ nm}$), (iii) Hphenthiourea. NO_3 ($\lambda_{max} = 307 \text{ nm}$), (c) (i) naphthiourea ($\lambda_{max} = 306 \text{ nm}$), (ii) Hnaphthiourea. ClO_4 ($\lambda_{max} = 312 \text{ nm}$, 353 nm).
Figure S4.	Powder X-ray diffraction patterns of (a) <i>Hphenurea.ClO</i> ₄ , (b) <i>phenthiourea</i> , (c) <i>Hphenthiourea.ClO</i> ₄ , (d) <i>Hphenthiourea.</i> NO ₃ , (e) <i>naphurea.H</i> ₂ O, (f) <i>Hnaphurea.ClO</i> ₄ . <i>H</i> ₂ O, (g) <i>Hnaphurea.NO</i> ₃ , (h) <i>naphthiourea</i> , (i) <i>naphthiourea.ClO</i> ₄ .
Figure S5.	Thermogram of (a) <i>naphurea</i> . H_2O , (b) <i>Hnaphurea</i> . ClO_4 . H_2O (heating rate 10°C/min).
Figure S6.	Solid-state photoluminescence spectra of (a) (i) <i>phenurea</i> . H_2O ($\lambda_{ex} = 330$ nm, $\lambda_{em} = 473$ nm, 492 nm, 530 nm), (ii) <i>Hphenurea</i> .ClO ₄ ($\lambda_{ex} = 309$ nm, $\lambda_{em} = 440$ nm); (b) (i) <i>phenthiourea</i> ($\lambda_{ex} = 295$ nm, $\lambda_{em} = 530$ nm), (ii) <i>Hphenthiourea</i> .ClO ₄ ($\lambda_{ex} = 307$ nm, $\lambda_{em} = 468$ nm), (iii) <i>Hphenthiourea</i> .NO ₃ ($\lambda_{ex} = 307$ nm, $\lambda_{em} = 468$ nm); (c) (i) <i>naphththiourea</i> ($\lambda_{ex} = 306$ nm, $\lambda_{em} = 468$ nm), (ii) <i>Hnaphththiourea</i> .ClO ₄ ($\lambda_{ex} = 321$ nm, $\lambda_{em} = 468$ nm).
Figure S7.	Solid-state photoluminescence spectra of <i>Hnaphurea.NO</i> ₃ (i) $\lambda_{ex} = 321$ nm, $\lambda_{em} = 391$ nm, 492 nm and (ii) $\lambda_{ex} = 335$ nm, $\lambda_{em} = 386$ nm, 509 nm.
Figure S8.	(a) Arrangements of the naphthalene rings and (b) the C-H··· π interactions in <i>naphurea</i> . <i>H</i> ₂ <i>O</i> .
Figure S9.	Free perchlorate anion and the urea tapes showing the projections of the carbonyls in the $Hnaphurea.ClO_4.H_2O$.
Figure S10.	Hydrogen bond environment of nitrate ion in the <i>Hnaphurea</i> .NO ₃ .
Figure S11.	C-H··· π interaction in the self-assembly of <i>Hnaphthiourea</i> .
Figure S12.	Electronic energy levels calculated by DFT showing the HOMO-LUMO gap in (a) phenthiourea, (b) Hphenthiourea cation, (c) phenurea. H_2O , (d) Hphenurea cation, (e)

naphthiourea, (f) Hnaphthiourea cation, (g) naphurea.H₂O, (h) Hnaphurea cation.

Figure S13. The changes in emission spectra of *Hnaphurea*.NO₃ in water upon addition of water (10 μ L aliquots) ($\lambda_{ex} = 258$ nm).

Figure S14. Changes in the emission spectra of supernatant water upon release of *naphurea* from *Hnaphurea*.*NO*₃@CaO pellet in water ($\lambda_{ex} = 258$ nm)

- Figure S15. Fluorescence spectroscopic titration ($\lambda_{ex} = 258 \text{ nm}$) of *Hnaphurea*. *ClO*₄. *H*₂*O* (10 µM) in water upon addition of NaAsO₂ (As in +3 oxidation state) (10 µM in 10 µL aliquots) showing enhancement of emission
- Figure S16. Fluorescence spectroscopic titration ($\lambda_{ex} = 258 \text{ nm}$) of *Hnaphurea.ClO₄.H₂O* (10 µM) in water upon addition of NaHAsO_{4.}7H₂O (As in +5 oxidation state) (10 µM in 10 µL aliquots) showing enhancement of emission.
- Figure S17. Fluorescence spectroscopic titration ($\lambda_{ex} = 258 \text{ nm}$) of *Hnaphurea*. *ClO*₄. *H*₂*O* (10 µM) in water upon addition of NaOH (10 µM in 10 µL aliquots) showing enhancement of emission.
- Figure S18. Photograph of solid samples of (a) *naphurea*. H_2O , (b) *Hnaphurea*. ClO_4 . H_2O , (c) *Hnaphurea*. NO_3 under UV lamp at 365 nm.
- Figure S19. Photograph of solid samples of (a) *naphurea*. H_2O , (b) *Hnaphurea*. ClO_4 . H_2O , (c) *Hnaphurea*. ClO_4 . H_2O @CaO pellet under UV-lamp at 365 nm.
- Figure S20. Photograph of solid samples of (a) *naphurea*.*H*₂*O*, (b) *Hnaphurea*.*NO*₃, (c) *Hnaphurea*.*NO*₃ @CaO pellet under UV-lamp at 365 nm.
- Figure S21.Powder X-ray diffraction patterns of (a) (i) CaO, (ii) Hnaphurea.ClO₄.H₂O, (iii)
CaO@Hnaphurea.ClO₄.H₂O; (b) (i) CaO, (ii) Hnaphurea.NO₃, (iii) CaO@Hnaphurea.NO₃.Figure S22.Changes in the fluorescence emission during the release of naphurea from Hnaphurea@CaO
- Figure S23. ¹H-NMR (600 MHz, DMSO- d_6) spectrum of *phenurea*. H_2O .

pellet in water ($\lambda_{ex} = 258$ nm).

- Figure S24. ¹H-NMR (500 MHz, DMSO-d₆) spectrum of *phenthiourea*.
- Figure S25. ¹H-NMR (500 MHz, DMSO- d_6) spectrum of *naphurea*. H_2O .
- Figure S26. ¹H-NMR (500 MHz, DMSO-d₆) spectrum of *naphthiourea*.
- Figure S27. ¹H-NMR (500 MHz, DMSO-d₆) spectrum of *Hphenurea*. *ClO*₄.
- Figure S28. ¹H-NMR (500 MHz, DMSO-d₆) spectrum of *Hphenthiourea*. ClO₄.
- Figure S29. ¹H-NMR (500 MHz, DMSO-d₆) spectrum of *Hphenthiourea*.NO₃
- Figure S30. ¹H-NMR (500 MHz, DMSO- d_6) spectrum of *Hnaphurea*. *ClO*₄. *H*₂O.
- Figure S31. ¹H-NMR (500 MHz, DMSO-d₆) spectrum of *Hnaphurea*.NO₃.
- Figure S32. ¹H-NMR (500 MHz, DMSO-d₆) spectrum of *Hnaphthiourea*. *ClO*₄.
- Figure S33. Intensity versus time curve of different ratios of *Hnaphurea.NO*₃ @CaO pellets in water (λ_{ex} = 258 nm, λ_{em} = 385 nm)
- Figure S34. Intensity versus time curve of different ratios of *Hnaphurea*@CaO pellets in water ($\lambda_{ex} = 258$ nm, $\lambda_{em} = 385$ nm).
- Figure S35. Electronic energy levels calculated by DFT showing the HOMO-LUMO gap in *Hphenthiourea.ClO*₄ with space groups C2/c and I2/a and total energy difference between

	these two forms (calculated by Gaussian software using the B3LYP functional and the 6-31G
	basis set).
Table S3.	X, Y, Z coordinates of <i>Hphenthiourea</i> . ClO ₄ (space group - C2/c).
Table S4.	X, Y, Z coordinates of <i>Hphenthiourea</i> . ClO_4 (space group - I2/a).

Hphenthiourea.NO₃

Hphenurea.ClO₄ Hphenthiourea.ClO₄ phenthiourea C₁₃H₁₄ClN₃O₅ C₁₃H₁₄ClN₃O₄S C₁₃H₁₄N₄O₃S Formula C13H13N3S CCDC 2171843 2171848 2172477 2171845 Mol.wt. 327.72 243.334 343.78 306.34 Space group Pbca $P2_1/c$ I2/a $P2_1/c$ a(Å) 10.6033(11) 5.9160(4) 18.620(3) 11.5055(9) b(Å) 9.1856(9) 22.1005(16) 5.4988(8) 8.4091(7) c (Å) 30.910(3) 9.9693(5) 30.636(4) 14.4045(13) α (°) 90 90 90 90 92.059(3) β (°) 90 100.216(6) 96.337(8) 90 90 90 90 γ (°) V (Å³) 1282.79(14) 3010.5(5) 3117.6(8) 1392.7(2) Density, g cm⁻³ 1.446 1.260 1.465 1.461 Abs. coeff., mm⁻¹ 0.281 0.233 0.400 0.249 F (000) 1360 512.756 1424 640 Total no. of reflections 2256 2460 2666 2750 Reflections, $I > 2\sigma(I)$ 1762 1630 2062 1890 Max. $\theta/^{\circ}$ 25.04 24.998 25.046 25.047 Ranges (h, k, l) $-11 \le h \le 12$ $-7 \le h \le 7$ $-22 \le h \le 22$ $-13 \le h \le 13$ $10 \le k \le 10$ $-29 \le k \le 27$ $-6 \le k \le 6$ $-10 \le k \le 10$ $-36 \le l \le 36$ $-6 \le l \le 12$ $-36 \le l \le 36$ $-17 \le l \le 17$ 99.7 99.9 99.9 99.8 Complete to 2θ (%) 2256/0/162 2750/ 0/ 199 2460/1/190 Data/restraints/paramete 2666/6/ 220 rs 1.046 1.0614 1.038 1.031 GooF (F²) 0.0650 0.0410 0.0810 0.0443 R indices $[I > 2\sigma(I)]$ 0.0834 0.1023 0.1792 0.1397 $wR_2 [I > 2\sigma(I)]$ 0.0997 0.0645 0.1098 0.0610 R indices (all data) 0.0949 0.2044 0.1649 0.1121 wR_2 (all data)

Table 1Sa. Crystallographic parameters of the urea/thiourea derivatives and their salts

Parameters

Parameters	naphurea.H ₂ O	Hnaphurea.ClO ₄ .H ₂ O	Hnaphurea.NO ₃	Naphthiourea	Hnapthiourea.ClO ₄
Formula	$C_{17}H_{17}N_3O_2$	C ₁₇ H ₁₈ ClN ₃ O ₆	C ₁₇ H ₁₆ N ₄ O ₄	C ₁₇ H ₁₅ N ₃ S	C ₁₇ H ₁₆ ClN ₃ O ₄ S
CCDC	2171849	2171846	2171847	2173492	2171850
Mol.wt.	295.33	395.79	340.34	293.38	393.84
Space group	Pca2 ₁	$P2_1/c$	Pbca	pĪ	Pbca
a(Å)	43.205(6)	10.886(3)	15.1546(10)	9.4256(6)	8.241(2)
b(Å)	7.7050(11)	8.2613(18)	13.0529(9)	9.7491(6)	17.685(5)
c (Å)	4.5617(6)	20.140(5)	16.4184(11)	17.9657(12)	25.201(7)
α (°)	90	90	90	85.658(2)	90
β (°)	90	98.990(6)	90	85.018(2)	90
γ (°)	90	90	90	69.168(2)	90
V (Å ³)	1518.6(4)	1789.0(7)	3247.7(4)	1535.35(17)	3672.9(18)
Density, g cm ⁻³	1.292	1.470	1.392	1.269	1.424
Abs. coeff., mm ⁻¹	0.087	0.255	0.102	0.207	0.349
F (000)	624	824	1424	616	1632
Total no. of reflections	2570	3124	2397	5374	3225
Reflections, $I > 2\sigma(I)$	1986	2554	1862	4443	2744
Max. $\theta/^{\circ}$	24.684	25.046	23.490	25.000	24.998
Ranges (h, k, l)	$-50 \le h \le 50$	$-12 \le h \le 12$	$-16 \le h \le 16$	$-11 \le h \le 11$	$-9 \le h \le 9$
	$-9 \le k \le 9$	-9≤ k≤ 9	$-14 \le k \le 14$	$-11 \le k \le 11$	$-21 \le k \le 21$
	$-5 \le l \le 5$	$-23 \le l \le 23$	$-18 \le l \le 18$	$-21 \le l \le 21$	$-29 \le l \le 29$
Complete to 2θ (%)	99.7	99.0	99.8	99.4	99.8
Data/restraints/parameters	2570/1/215	3124/0/260	2397/0/238	5374/1/ 395	3225/0/248
GooF (F ²)	1.133	1.053	1.258	1.095	1.087
R indices $[I > 2\sigma(I)]$	0.0890	0.0629	0.0669	0.0486	0.0640
$wR_2 [I > 2\sigma(I)]$	0.2066	0.1658	0.1166	0.0965	0.1600
R indices (all data)	0.1236	0.0773	0.0895	0.0617	0.0753
wR ₂ (all data)	0.2288	0.1860	0.1314	0.1055	0.1666

Table 1Sb. Crystallographic parameters of the urea/thiourea derivatives and their salts

Salts	D-H…A	d _{D-H} (Å)	d _{H⋯A} (Å)	d _{D⊶A} (Å)	∠D-H…A (°)
Hphenurea.ClO ₄	N(1) -H(1) …O(1) [3/2-x, -1/2+y, z]	0.85 (2)	2.00 (2)	2.833 (3)	166 (3)
	N(2) -H(2) …O(1) [3/2-x, -1/2+y, z]	0.849 (19)	2.30 (2)	3.034 (3)	145 (3)
	N(3) -H(3) …O(5A) [1-x,1-y,-z]	0.86	1.88	2.675 (10)	153
	N(3) -H(3) …O(3A^B) [1-x,1-y,-z]	0.86	2.31	3.051 (19)	144
	N(3) -H(3) …O(5A^B) [1-x,1-y,-z]	0.86	2.23	3.05 (3)	160
	C(8) -H(8B) …O(4A) [x,y,z]	0.97	2.40	3.314 (8)	157
	C(8) -H(8B) …O(2A^B) [x,y,z]	0.97	2.36	3.24 (3)	151
	C(11) -H(11) …O(2A) [1/2+x,1/2-y,-z]	0.93	2.49	3.367 (8)	157
Phenthiourea	N(1) -H(1) …S(1) [-x, -y, 1-z]	0.85 (2)	2.50 (2)	3.340 (2)	168.6 (19)
	N(2) -H(2) …N(3) [x, 1/2-y, -1/2+z]	0.91(2)	2.21 (2)	3.005 (3)	144.7(18)
Hohenthiourea CIO.	N(1) _H(1A)S(1) [1/2-v 5/2-v 1/2-7]	0.86	2 52	2 255 (4)	162
npnentmoured.clo ₄	N(2) - H(2A) O(2) [x - x - 3]	0.86	2.55	2 940 (8)	150
	N(2) - H(2A) - O(3) [2, 3, 2]	0.86	1 91	2.540 (8)	167
	N(3) N(3A) O(4) [1/2 · A, 1 y, 2]	0.00	1.91	2.750 (10)	107
Hphenthiourea .NO3	N(1) -H(1) …O(2) [1-x, 1/2+y, 1/2-z]	0.86	2.21	3.052 (3)	167
	N(3) -H(3) …O(1) [x, 1/2-y, 1/2+z]	0.86	1.95	2.803 (3)	173
naphurea.H₂O	N(1) -H(1A) … O(1) [x, y, -1+z]	0.77 (9)	2.15 (9)	2.858 (9)	153 (8)
	N(2) -H(2A) …O(1) [x, y, -1+z]	0.83 (9)	2.12(9)	2.873 (9)	151 (7)
	O(2) -H(2C) …O(2) [1/2-x, y, -1/2+z]	0.82 (12)	1.94 (12)	2.750 (11)	172 (9)
	O(2) -H(2D) …N(3) [x, 1+y, -1+z]	0.86 (9)	2.03 (10)	2.873 (11)	170 (8)
Hnaphurea.ClO₄.H₂O	O(6) -H(6A) …O(1) [x, 1+y, z]	0.85	2.04	2.892 (4)	177
	N(1) -H(1) …O(1) [1-x, 1/2+y, 1/2-z]	0.86	2.22	3.010 (3)	153
	O(6) -H(6B) …O(2) [x, 1+y, z]	0.85	2.40	3.183 (7)	154
	N(2) -H(2) …O(1) [1-x, 1/2+y, 1/2-z]	0.86	2.17	2.975 (3)	156
	N(3) -H(3) …O(6) [-x, -1/2+y, 1/2-z]	0.86	1.89	2.723 (5)	164

Table S2. Hydrogen-bond parameters in the urea/thiourea derivatives and corresponding perchlorate and nitrate salts

	C(4) -H(4) …O(2A^B) [1-x, -y, -z]	0.93	2.58	3.50 (4)	169
	C(14) -H(14) …O(2) [x, y, z]	0.93	2.51	3.377 (7)	156
	C(15) -H(15) …O(5A^B) [x, y, z]	0.93	2.33	3.10 (2)	141
	C(16) -H(16) …O(4A^B) [x, 1/2-y, 1/2+z]	0.93	2.56	3.349 (7)	143
Hnaphurea.NO₃	N(1) -H(1) …O(2) [x, 1/2-y, -1/2+z]	0.86 (3)	2.01 (3)	2.860 (4)	170 (4)
	N(2) -H(2) …O(3) [x, 1/2-y, -1/2+z]	0.87 (4)	2.05 (4)	2.903 (4)	169 (3)
	N(3) -H(3) …O(1) [-1/2+x, y, 1/2-z]	1.04 (5)	1.63 (5)	2.663 (4)	170 (4)
	C(15) -H(15) …O(4) [-1/2+x, y, 1/2-z]	0.93	2.58	3.506 (4)	171
naphthiourea	N(1) -H(1) …S(1) [1-x, -y, 1-z]	0.82 (3)	2.60 (3)	3.391(2)	164 (3)
	N(2) -H(2) …N(6) [-x, 1-y, 1-z]	0.84 (2)	2.145 (19)	2.888 (3)	147.1 (17)
	N(4) -H(4A) …S(2) [1-x, -y, -z]	0.82 (3)	2.61 (3)	3.415 (2)	169 (2)
	N(5) -H(5) …N(3) [1-x, 1-y, 1-z]	0.80 (3)	2.13 (3)	2.888 (4)	158 (2)
Hnapthiourea.ClO₄	N(1) -H(1)S(1) [-1/2+x, y, 1/2-z]	0.86	2.46	3.264 (3)	157
	N(2) -H(2) …O(3A) [x, y, z]	0.86	2.26	3.053 (10)	152
	N(2) -H(2) …O(3A^B) [x, y, z]	0.86	2.31	3.02 (4)	140
	N(3) -H(3) …O(3A) [1/2-x, 1/2+y, z]	0.86	2.01	2.847 (10)	164
	N(3) -H(3) …O(3A^B) [1/2-x, 1/2+y, z]	0.86	2.06	2.83 (4)	148
	N(3) -H(3) …O(4A^B) [1/2-x, 1/2+y, z]	0.86	2.40	3.122 (19)	142
	C(15) -H(15) …O(4A^B) [-x, 1-y, -z]	0.93	2.47	3.279 (18)	145

Figure S1. IR-spectra of the solid samples of (a) (i) *phenurea*. H_2O , (ii) *Hphenurea*. ClO_4 , (b) (i) *naphurea*. H_2O , (ii) *Hnaphurea*. ClO_4 . H_2O , (iii) *Hnaphurea*. NO_3 ; (c) (i) *naphthiourea*, (ii) *Hnaphthiourea* ClO_4.

Figure S2. ESI mass of the (a) phenurea, (b) phenthiourea, (c) naphurea and (d) naphthiourea.

Figure S3. UV-vis spectra of solid samples of (a) phenurea. H_2O ($\lambda_{max} = 291$ nm), Hphenurea. ClO_4 ($\lambda_{max} = 309$ nm), (b) (i) phenthiourea ($\lambda_{max} = 295$ nm), (ii) Hphenthiourea. ClO_4 ($\lambda_{max} = 307$ nm), (iii) Hphenthiourea. NO_3 ($\lambda_{max} = 307$ nm), (c) (i) naphthiourea ($\lambda_{max} = 306$ nm), (ii) Hnaphthiourea. ClO_4 ($\lambda_{max} = 312$ nm, 353 nm).

Figure S4. Powder X-ray diffraction patterns of (a) *Hphenurea*. ClO_4 , (b) *phenthiourea*, (c) *Hphenthiourea*. ClO_4 , (d) *Hphenthiourea*.NO₃, (e) *naphurea*. H_2O , (f) *Hnaphurea*. ClO_4 . H_2O , (g) *Hnaphurea*. NO_3 , (h) *naphthiourea*, (i) *Hnaphthiourea*. ClO_4 .

Figure S5. Thermogram of (a) *naphurea*. H_2O , (b) *Hnaphurea*. ClO_4 . H_2O (heating rate 10°C/min).

Figure S6. Solid-state photoluminescence spectra of (a) (i) *phenurea*. H_2O ($\lambda_{ex} = 330$ nm, $\lambda_{em} = 473$ nm, 492 nm, 530 nm), (ii) *Hphenurea*.ClO₄ ($\lambda_{ex} = 309$ nm, $\lambda_{em} = 440$ nm); (b) (i) *phenthiourea* ($\lambda_{ex} = 295$ nm, $\lambda_{em} = 530$ nm), (ii) *Hphenthiourea*.ClO₄ ($\lambda_{ex} = 307$ nm, $\lambda_{em} = 468$ nm), (iii) *Hphenthiourea*.NO₃ ($\lambda_{ex} = 307$ nm, $\lambda_{em} = 468$ nm); (c) (i) *naphththiourea* ($\lambda_{ex} = 306$ nm, $\lambda_{em} = 468$ nm), (ii) *Hnaphththiourea*.ClO₄ ($\lambda_{ex} = 321$ nm, $\lambda_{em} = 468$ nm).

Figure S7. Solid-state photoluminescence spectra of *Hnaphurea.NO*₃ (i) $\lambda_{ex} = 321$ nm, $\lambda_{em} = 391$ nm, 492 nm and (ii) $\lambda_{ex} = 335$ nm, $\lambda_{em} = 386$ nm, 509 nm.

Figure S8. (a) Arrangements of the naphthalene rings and (b) the C-H $\cdots\pi$ interactions in *naphurea*. H_2O .

Figure S9. Free perchlorate anion and the urea tapes showing the projections of the carbonyls in the *Hnaphurea*. ClO_4 . H_2O .

Figure S10. Hydrogen bond environment of nitrate ion in the Hnaphurea.NO3.

Figure S11. C-H··· π interaction in the self-assembly of *Hnaphthiourea*.

re Figure S12. Electronic energy levels calculated by DFT showing the HOMO-LUMO gap in (a) phenthiourea, (b) Hphenthiourea

cation, (c) *phenurea*. H_2O , (d) *Hphenurea cation,* (e) *naphthiourea,* (f) *Hnaphthiourea cation,* (g) *naphurea*. H_2O , (h) *Hnaphurea cation.*

Figure S13. The changes in emission spectra of *Hnaphurea.NO*₃ in water upon addition of water (10 μ L aliquots) ($\lambda_{ex} = 258$ nm).

Figure S14. Changes in the emission spectra of supernatant water upon release of *naphurea* from *Hnaphurea*.*NO*₃@CaO pellet in water ($\lambda_{ex} = 258$ nm).

Figure S15. Fluorescence spectroscopic titration ($\lambda_{ex} = 258 \text{ nm}$) of *Hnaphurea.ClO*₄.*H*₂*O* (10 μ M) in water upon addition of NaAsO₂ (As in +3 oxidation state) (10 μ M in 10 μ L aliquots) showing enhancement of emission.

Figure S16. Fluorescence spectroscopic titration ($\lambda_{ex} = 258 \text{ nm}$) of *Hnaphurea*. *ClO*₄. *H*₂*O* (10 μ M) in water upon addition of NaHAsO₄. 7H₂O (As in +5 oxidation state) (10 μ M in 10 μ L aliquots) showing enhancement of emission.

Figure S17. Fluorescence spectroscopic titration ($\lambda_{ex} = 258 \text{ nm}$) of *Hnaphurea.ClO*₄.*H*₂*O* (10 μ M) in water upon addition of NaOH (10 μ M in 10 μ L aliquots) showing enhancement of emission.

Figure S18. Photograph of solid samples of (a) *naphurea*. H_2O , (b) *Hnaphurea*. ClO_4 . H_2O , (c) *Hnaphurea*. NO_3 under UV lamp at 365 nm.

Figure S19. Photograph of solid samples of (a) *naphurea*. H_2O , (b) *Hnaphurea*. ClO_4 . H_2O , (c) *Hnaphurea*. ClO_4 . H_2O @CaO pellet (1:1 ratio) under UV-lamp at 365 nm.

Figure S20. Photograph of solid samples of (a) *naphurea*. H_2O , (b) *Hnaphurea*. NO_3 , (c) *Hnaphurea*. NO_3 @CaO (1:1 ratio) pellet under UV-lamp at 365 nm.

(a) (b) Figure S21. Powder X-ray diffraction patterns of (a) (i) CaO, (ii) *Hnaphurea.ClO*₄. H_2O , (iii) CaO@*Hnaphurea.ClO*₄. H_2O (1:1 ratio); (b) (i) CaO, (ii) *Hnaphurea.NO*₃, (iii) CaO@*Hnaphurea.NO*₃ (1:1 ratio).

Figure S22. Changes in the fluorescence emission during the release of *naphurea* from *Hnaphurea*@CaO pellet (1:1 ratio) in water ($\lambda_{ex} = 258$ nm).

Figure S23. ¹H-NMR (600 MHz, DMSO-d₆) spectrum of *phenurea*.H₂O.

Figure S25. ¹H-NMR (500 MHz, DMSO-d₆) spectrum of *naphurea*.*H*₂*O*.

Figure S26. ¹H-NMR (500 MHz, DMSO-d₆) spectrum of *naphthiourea*.

Figure S27. ¹H-NMR (500 MHz, DMSO-d₆) spectrum of *Hphenurea*.*ClO*₄.

Figure S28. ¹H-NMR (500 MHz, DMSO-d₆) spectrum of *Hphenthiourea*. ClO₄.

Figure S30. ¹H-NMR (500 MHz, DMSO-d₆) spectrum of *Hnaphurea*. ClO₄. H₂O.

Figure S31. ¹H-NMR (500 MHz, DMSO-d₆) spectrum of *Hnaphurea*.NO₃.

Figure S33. Intensity versus time curve of different ratios of *Hnaphurea*@CaO pellets in water ($\lambda_{ex} = 258 \text{ nm}, \lambda_{em} = 385 \text{ nm}$).

Figure S34. Intensity versus time curve of different ratios of *Hnaphurea.NO*₃ @CaO pellets in water ($\lambda_{ex} = 258 \text{ nm}, \lambda_{em} = 385 \text{ nm}$).

Figure S35. Electronic energy levels calculated by DFT showing the HOMO-LUMO gap in *Hphenthiourea*. ClO_4 with space groups C2/c and I2/a and total energy difference between these two forms (calculated by Gaussian software using the B3LYP functional and the 6-31G basis set).

Table 55. A, T, Z coordinates of <i>Tipheninioureu</i> . CiO ₄ (space group - C2/	`able	e S3.	Х,	Y, Z	coordinates	of H	ohenthiourea.	ClO_4	(space	group	- C2	2/c	:).
--	-------	-------	----	------	-------------	------	---------------	---------	--------	-------	------	-----	-----

Center	Atomic	Coordina	tes (Å)	
Number	Number	Х	Y	Ζ
1	17	0.059190	-2.793878	0.201967
2	8	1.704025	-2.629749	0.731428
3	8	-0.945688	-1.868863	1.297897
4	8	-0.443323	-4.427454	0.148811
5	8	-0.065290	-2.047936	-1.378851
6	16	0.864983	3.255294	0.025398
7	7	-1.587179	2.197330	-0.333411
8	7	-0.057201	0.809679	0.781390
9	6	-2.750179	1.357218	-0.300075
10	6	-0.340552	1.984269	0.172929
11	6	2.406182	0.588431	0.500144

12	7	4.649394 0.387566 -1.103620
13	6	-2.710357 0.019479 -0.717476
14	1	-1.790375 -0.433290 -1.069846
15	6	1.221103 0.580421 1.440428
16	1	1.159845 -0.420632 1.886377
17	1	1.382216 1.318498 2.232746
18	6	2.336841 -0.046197 -0.761577
19	1	1.412793 -0.499994 -1.106186
20	6	-3.963672 1.932623 0.112950
21	1	-3.982398 2.968218 0.439162
22	6	-3.882531 -0.744835 -0.685799
23	1	-3.838659 -1.784476 -0.990810
24	6	3.654421 1.089430 0.929223
25	1	3.743255 1.580380 1.889973
26	6	-5.092893 -0.177049 -0.276102
27	1	-5.998175 -0.774839 -0.261040
28	6	-5.131922 1.167657 0.115299
29	1	-6.066979 1.616944 0.434020
30	6	3.464642 -0.130848 -1.547757
31	1	3.473711 -0.613533 -2.515097
32	6	4.763181 0.987413 0.117317
33	1	5.739074 1.365590 0.388285
34	1	-1.706070 3.124584 -0.718881
35	1	-0.721211 0.031850 0.843279
36	1	5.468520 0.313835 -1.693620

Table S4. X, Y, Z coordinates of *Hphenthiourea*. ClO_4 (space group - I2/a).

Center	Atomic	Coord	linates (Ang	stroms)
Number	Number	Х	Y	Z
1	16	-1.191556	-3.839159	-0.474492
2	7	-2.650634	-1.644204	0.067563
3	1	-3.273922	-2.384167	0.361282
4	7	-0.472983	-1.198569	-0.649700
5	1	-0.573322	-0.202429	-0.417704
6	7	4.033665	-0.662776	1.441715
7	1	4.764571	-0.341422	2.064335
8	6	-4.272934	2.253624	0.401058
9	1	-4.696346	3.247562	0.496801
10	6	-4.518881	1.285029	1.381583
11	1	-5.137886	1.522797	2.240593
12	6	-3.955946	0.012165	1.269019
13	1	-4.126709	-0.734177	2.039247
14	6	-3.153243	-0.308125	0.161348
15	6	-2.926571	0.653831	-0.835878
16	1	-2.340562	0.407761	-1.713069
17	6	-3.475038	1.932715	-0.701748

18	1	-3.278743	2.675907	-1.466786
19	6	-1.438570	-2.107989	-0.363216
20	6	0.819093	-1.558281	-1.211132
21	1	0.988501	-0.984719	-2.127300
22	1	0.778268	-2.630464	-1.457884
23	6	1.960887	-1.292671	-0.264748
24	6	1.784139	-1.338484	1.132175
25	1	0.816723	-1.584096	1.546549
26	6	2.828542	-1.009366	1.970886
27	1	2.742920	-0.989860	3.048002
28	6	4.249158	-0.610658	0.100290
29	1	5.221669	-0.273158	-0.227585
30	6	3.228351	-0.940607	-0.767298
31	1	3.388084	-0.846358	-1.832356
32	17	1.445587	2.216612	-0.302678
33	8	0.098523	1.374201	0.431453
34	8	2.833999	1.967445	0.705428
35	8	1.728859	1.472792	-1.848780
36	8	1.097672	3.882149	-0.471577