Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2022

Electronic supporting information for:

The preparation of FITC-carbon dots nanocomposite and using the C-18 reverse phase column to improve the Hg²⁺ ion sensitivity of FITC-carbon dots ratiometric fluorescent sensor

Jyun-Ting Li and Chih-Wei Chang*

Department of Chemistry, National Changhua University of Education, Taiwan

*Corresponding author: cwchang@cc.ncue.edu.tw

Table of contents

Fig. S ₁ : The TEM images of (a) the $CDs(\alpha)$ and (b) the $FITC-CDs(\alpha)$ S3
Fig. S ₂ : The steady-state spectra of (a) the $CDs(\alpha)$ and (b) the FITCS4
Fig. S ₃ : (a) the TEM image and (b) the steady state spectra of $CDs(\beta)$ S5
Fig. S ₄ : The steady-state spectra of (a) the $CDs(\alpha)$ and (b) the $CDs(\beta)$ at various
concentrations
Fig. S ₅ : The XPS survey scan for (a) the $CDs(\alpha)$ and (b) the $CDs(\beta)$ S7
Fig. S ₆ : (a) the steady-state absorption spectra of the FITC labelled on the $CDs(\alpha)$, the
$CDs(\alpha)_{ambient}$ and the $CDs(\alpha)_{sealed}$.(b) the steady state spectra of the $CDs(\alpha)_{sonicated}$ and
the FITC-CDs(α) _{sonicated}
Fig. S ₇ : (a) the XPS survey scan and (b) the FTIR specra of the $CDs(\alpha)_{sonicated}$
Fig. S ₈ : The XPS spectra of (a) the $CDs(\alpha)^{I}$, (b) the $CDs(\alpha)^{II}$ and (c) the $CDs(\alpha)^{III}$

Fig. S₁: The TEM images of (a) the $CDs(\alpha)$ and (b) the $FITC-CDs(\alpha)$.

Fig. S₂: The steady-state spectra of (a) the $CDs(\alpha)$ and (b) the FITC.

Fig. S₃: (a) the TEM image and (b) the steady state spectra of $CDs(\beta)$

Fig. S₄: The steady-state spectra of (a) the $CDs(\alpha)$ and (b) the $CDs(\beta)$ at various concentrations.

Fig. S₅: The XPS survey scan for (a) the $CDs(\alpha)$ and (b) the $CDs(\beta)$.

Fig. S₆: (a) the steady-state absorption spectra of the FITC labelled on the CDs(α), the CDs(α)_{ambient} and the CDs(α)_{sealed}.(b) the steady state spectra of the CDs(α)_{sonicated} and the FITC-CDs(α)_{sonicated}.

Fig. S₇: (a) the XPS survey scan and (b) the FTIR specra of the $CDs(\alpha)_{sonicated}$.

Fig. S₈: The XPS spectra of (a) the $CDs(\alpha)^{I}$, (b) the $CDs(\alpha)^{II}$ and (c) the $CDs(\alpha)^{III}$