Electronic Supplementary Information

Superparamagnetic cobalt ferrite nanoparticles synthesized by gamma irradiation

Amel ZORAI,^{a,b} Abdelhafid SOUICI,^{a*} Diana DRAGOE,^c Eric RIVIERE,^c Salim OUHENIA,^a Jacqueline BELLONI,^b and Mehran MOSTAFAVI ^{b*}

^a.Laboratoire de physico-chimie des matériaux et catalyse, Faculté des Sciences Exactes Université de Bejaia, Bejaia 06000, Algeria.

^b.Institut de Chimie Physique, Université Paris-Saclay, CNRS 8000, Bâtiment 349, Campus d'Orsay, 15 Avenue Jean Perrin, 91405, Orsay Cedex, France.

^c.Institut de Chimie Moléculaire et des Matériaux d'Orsay, UMR 8182, CNRS, Université Paris-Saclay, Bâtiment Henri Moissan, 19 avenue des Sciences, 91400, Orsay, France.

Figure SI1. Optical absorption spectra at various γ -doses of a solution containing 4 × 10⁻³ mol L⁻¹ iron (III) chloride hexahydrate (FeCl₃, 6H₂O), 2 × 10⁻³ mol L⁻¹ cobalt (II) chloride hexahydrate (CoCl₂, 6H₂O) 10⁻³ mol L⁻¹ PVP, and 0.13 mol L⁻¹ isopropanol. The pH of solution is \approx 11.8.

Figure SI2. Top: HRTEM images and size distribution of $CoFe_2O_4$ NPs radiation-induced at 20 kGy (D = 9.7 ± 1.0 nm). Middle : HRTEM images and size distribution of $CoFe_2O_4$ NPs radiation-induced at 60 kGy (D = 10.1 ± 1.5 nm). Bottom: EDS spectrum of $CoFe_2O_4$ at 60 kGy.

Figure SI3. The Fe 2p and Co 2p core-level spectra together with the interfering Auger signals (left) and a superposition of Fe2p and Co2p difference spectra obtained for samples irradiated at 8 kGy and 60 kGy (right). Fe LMM was measured on a reference sample of Fe_3O_4 and Co LMM on a reference Co_3O_4 .

Figure SI4. Hysteresis loops of the magnetization (M) versus the magnetic field (H), measured at T = 100 K, of $CoFe_2O_4$ nanoparticles formed at the doses 8, 20 and 60 kGy. Right inset: magnification of the low field region.

Table SI1. Literature data on the synthesis and properties of cobalt ferrite $CoFe_2O_4$ nanoparticles.

Authors	Method	Temperature of synthesis or treatment (°C)	Size D (nm)	Magnetic properties <i>Ms</i> (Am ² kg ⁻¹)	Reference
Mooney et al. 2004	Reduction by alkalide in ether	Annealing at 200 - 1000	3 - 30	75	22
Herrera et al. 2013	Thermal decomposition	325	5 - 12	10 - 50	64
Bohara et al. 2014	High thermal decomposition	100 - 210	7	38	20
Gaudisson et al. 2014	Reduction by boiling polyols (EG, PEG)	Boiling point	6 - 11	48 - 71	21
Paramasivanet al. 2016	Hydrothemal (PVP)	200, then annealing at 400, 500,600	21 - 33	57 - 41	SI1
Li et al. 2016	Organic process (oleic acid, oleylamine, tetradecanediol, and benzyl ether).	110 - 295	6 - 8	74 - 80	54
Raut et al. 2015	Sol-gel auto-combustion, annealing then Irradiation	70 – 110, then annealing at 600	47 - 50	65 - 81	16
Raut et al. 2016	Sol-gel auto-combustion, then Irradiation	70 – 110, then annealing at 600	52 - 59	65 - 84	60
Angotzi et al. 2017	Solvothermal seed-mediated growth	200	8 - 12	-	17
Zhang et al. 2017	Thermal decomposition	326	4	30	19
Shams et al. 2018	Coprecipitation	60	8	50	17
Darwish et al. 2019	Coprecipitation	60	8	50 - 60	62
Gurgel et al. 2019	Microwave-assisted hydrothermal	40	6 - 15	54 - 65	SI ²
Kumar et al. 2020	Coprecipitation	Annealing at 300 - 900	10 - 40	37 - 71	63
Palade et al. 2020	Hydrothermal pH 7 - 9	200	7.8 - 9.6	37.9 - 67.2	16
Shanmugam et al. 2020	Reduction by boiling glycol	Boiling point	7.8	41	SI ³

References

- 1. P. Paramasivan and P. Venkatesh, J. Supercond. Nov. Magn., 2016, **29**, 2805-2811.
- 2. A. L. Gurgel, A. E. Martinelli, O. L. de Aquino Conceição, M. M. Xavier Jr, M. A. M. Torres and D. M. de Araújo Melo, *J. Alloys Compd.*, 2019, **799**, 36-42.
- 3. S. Shanmugam and B. Subramanian, *Mater. Sci. Eng. B.*, 2020, **252**, 114451.