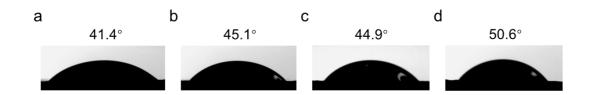
Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2023

Supporting Information


MXene-Based Separators for Redox-enhanced Electric Capacitors with Suppressed Shuttle Effect and Self-discharge: the Effect of MXene Ageing

Qiankun Han^{a,b}, Wei Yang^b, Wenshi Li^b, Maosheng Wu^b, Jing Yao^{a,b}, Man Zhao^b, Xianmao Lu^{a,b*}

^a Center on Nanoenergy Research, School of Physical Science and Technology, School of Resources, Environment and Materials, Guangxi University, Nanning, Guangxi, 530004, China

^b Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing 100083, P. R. China; School of Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing 100049, P. R. China

*Corresponding author. E-mail: <u>luxianmao@binn.cas.cn</u>

Figure S1 Water contact angles on the surfaces of $Ti_3C_2T_x$, $Ti_3C_2T_x$ -4h, $Ti_3C_2T_x$ -8h, and $Ti_3C_2T_x$ -12h films.

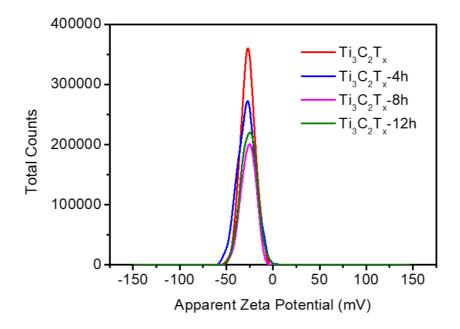


Figure S2 Zeta potential distributions of $Ti_3C_2T_x$, $Ti_3C_2T_x$ -4h, $Ti_3C_2T_x$ -8h, and $Ti_3C_2T_x$ -12h.