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Materials characterizations 

The morphology and composition of the materials were characterized by SEM, 

TEM, XRD, XPS, XANES and EXAFS measurements. The Rigaku diffraction 

system (D/Max2000) was used to record the XRD patterns of the prepared catalysts. 

The microstructures and morphology of catalysts were measured by the scanning 

electron microscope (Hitachi S-4800). The JEOL JEM-2100F transmission electron 

microscope was used to perform the TEM and HRTEM measurements. Thermo 

Scientific ESCALAB 250Xi X-ray photoelectron spectrometer was used to detect the 

electronic structure and chemical state of Ir and O elements in catalyst structure. The 

XANES of Ir LⅢ-edge and La LⅢ-edge were measured at room temperature by the 

BL10c beam line at the Pohang Light Source (PLS-II), Korea. 



Electrochemical measurement 

In a typical three-electrode system, the 0.1 M HClO4 solution was used as the 

electrolyte. The working electrode was prepared by loading of 5 μL of the catalyst ink 

on a glassy carbon (GC: 3 mm in diameter). Carbon rod and Ag/AgCl were used as 

counter and reference electrodes, respectively. The working electrode was prepared 

according to the steps below: First, the prepared catalyst powder (2 mg) was added 

into 100 μL of deionized water and 200 μL ethanol with 40 μL of 5 wt % Nafion 

solution. Next, 1mg of carbon black (XC-72) was added to the formulated ink. The 

polarization curves were measured in the potential range of 1.20 V to 1.70 V (vs RHE) 

and the scanning speed was 5 mV s-1. All data were compensated with iR (95%). ESI 

measurements were made at an open circuit potential in the frequency range of 100 

kHz to 0.1 Hz. The durability testing was performed by a chronopotentiometry 

method at a current density of 10 mA cm-2. The activity and stability of commercially 

available IrO2 (Macklin, 99.9%) for OER was determined under the same condition. 

Measurement of the Faraday Efficiency: A piece of Ti mesh coated by 1 mg 

IrOx/LaCO3OH (surface area = 1 cm2) was used as the working electrode. Before 

measurement, the cell was purged by N2 gas for about 20 min to to detect the air 

tightness of the cell. A linear relationship between the O2 and N2 gas flow rate and its 

GC peak area ratio was obtained by plotting five GC measurements of adjust flow 

rate O2 samples with fixed flow rate of N2 is 5 sccm. The GC measurements were 

measured by FULI INSTRUMENTS GC 9790 plus gas chromatograph.  



The GC peak area has a relationship: A (oxygen product) = [A (oxygen 600 s) – 

A (oxygen 0 s)], as shown in Fig. S6. Therefore, A (N2/O2) = A(nitrogen 

600s)/A[(oxygen 600s) – A (oxygen 0s)] =4518290/[88888.4-29650.8] =76.27. Take 

this ratio into the linear equation. O2 flow rate = 5/[1.965*76.27-0.36899] = 0.03345 

sccm. The product amount is nO2 = 0.03345*10*10-3/22.45 = 1.49 µmol. After 600s, 

amount of charge transferred by reaction were 6.0189C. The ideal product amount is 

n(O2,theoretical) =C/F/4 = 6.0189/(96485*4) = 1.56 µmol, where C is the amount of 

charge transferred, F is the faraday constant (96485 C mol-1). Therefore, the Faraday 

efficiency is n(O2,experimental)/n(O2,theoretical)×100% = 1.49/1.56*100% = 95.5%. 

 



Fig. S1 The XRD pattern of the IrOx/LaCO3OH. 

 



 

Fig. S2 The SEM pattern of the amorphous IrOx. 



 

Fig. S3 The XRD pattern of the Amorphous IrOx. 



 

Fig. S4 HAADF-STEM image of the Amorphous IrOx and the corresponding 

elemental mappings of Ir, and O. 

 



 

Fig. S5 The XRD pattern of the LaCO3OH. 

 



 

Fig. S6. (a) The linear relationship between the velocity ratio of O2/N2 and its GC 

peak area ratio. (b) GC profiles of O2 and N2 for IrOx/LaCO3OH after 0 and 600 s 

electrolysis. 



 

Fig. S7 Cyclic voltammograms recorded at various scan rates (10 ~ 120 mV s-1) for 

determining the double layer capacitance: (a) IrOx/LaCO3OH, (b) Commercial IrO2, 

(c) Amorphous IrOx. 

 



 

Fig. S8 Nyquist plots of electrochemical impedance spectra (EIS) of the 

IrOx/LaCO3OH. 



 

Fig. S9 Long-term chrono potentiometric curves of IrOx/LaCO3OH and Commercial 

IrO2 at 10 mA cm-2. 

 



 

Fig. S10 Cyclic voltammograms recorded at various scan rates (10 ~ 120 mV s-1) for 

determining the double layer capacitance: (a) IrOx/LaCO3OH-3:1, (b) IrOx/LaCO3OH 

-4:1 and (c) The double-layer capacitances of catalysts prepared at different molar 

ratios. 



 

Fig. S11 (a) Polarization curves and (b) Tafel slopes of catalysts prepared at different 

molar ratios. 

 

 



 

Fig. S12 Cyclic voltammograms recorded at various scan rates (10 ~ 120 mV s-1) for 

determining the double layer capacitance: (a) IrOx/LaCO3OH-160℃ and (b) The 

double-layer capacitances of catalysts prepared at different temperatures. 



 

Fig. S13 (a) Polarization curves and (b) Tafel slopes of catalysts prepared at different 

temperatures. 

 



 

Fig. S14 Cyclic voltammograms recorded at various scan rates (10 ~ 120 mV s-1) for 

determining the double layer capacitance: (a) IrOx/LaCO3OH-12 h, (b) 

IrOx/LaCO3OH-36 h and (c) The double-layer capacitances of catalysts prepared at 

different reaction times. 



 

Fig. S15 (a) Polarization curves and (b) Tafel slopes of catalysts prepared at different 

reaction times. 



 

Fig. S16. SEM image of catalysts prepared with reaction for (a) 12 h and (b) 36 h. 



Table S1 Comparison of the overpotentials at 10 mA cm-2 with recently reported 

OER catalysts in acidic media 

Electrocatalyst Electrolyte 

Overpotential(mV) 

at 10 mA cm-2 

References 

Commercial RuO2 0.1 M HClO4 315 This work 

IrOx/LaCO3OH 0.1 M HClO4 255 This work 

NiIrRuAl-1/3 0.1 M HClO4 237 [1] 

6H-SrIrO3 0.5 M H2SO4 248 [2] 

La-Ir NF 0.1 M HClO4 263 [3] 

SrIrO-1100 0.5 M H2SO4 263 [4] 

RuCu 0.5 M H2SO4 270 [5] 

IrCuNi DCNCs 0.1 M HClO4 273 [6] 

Ni0.34Co0.46Ir0.2Oδ 0.1 M HClO4 280 [7] 

IrCo 0.5 M H2SO4 284 [8] 

Ir0.4Mn0.6Oδ 0.1 M H2SO4 285 [9] 

Sr2IrO4 0.1 M HClO4 286 [10] 

La3IrO7-SLD 0.1 M HClO4 296 [11] 

Ir0.06Co2.94O4 0.1 M HClO4 300 [12] 

IrOx-03 0.1 M HClO4 300 [13] 

IrOx/Pr3IrO7 0.1 M HClO4 305 [14] 

IrNiOx TF 0.1 M HClO4 315 [15] 

Ir/Co4N 0.5 M H2SO4 319 [16] 



0.5IrO2-0.5SiO2 0.5 M H2SO4 322 [17] 

IrNi/NiO HT 0.1 M HClO4 329 [18] 

Ir0.7Co0.3Ox 0.5 M H2SO4 330 [19] 

IrNiOx 0.1 M HClO4 332 [18] 

Ir HT 0.1 M HClO4 336 [18] 

Ir0.3Mo0.7Oδ 0.1 M HClO4 345 [20] 

Ir/Ni4N 0.5 M H2SO4 346 [16] 

Ba2YIrO6 0.1 M HClO4 350 [21] 

Kx0.25IrO2 0.1 M HClO4 350 [22] 

SrIrO3 0.1 M HClO4 353 [10] 

Bi2Ir2O7 1 M H2SO4 365 [23] 

RuIrCoOx 0.5 M H2SO4 394 [24] 
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