Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2022

New Journal of Chemistry

Electronic Supporting Information (ESI) for

Silver(I) complexes containing heteroleptic diorganochalcogen(II) ligands

Roxana A. Butuza, Darius Dumitraș, Cosmina Bohan and Alexandra Pop*

Corresponding author: Alexandra Pop Supramolecular Organic and Organometallic Chemistry Centre, Chemistry Department, Faculty of Chemistry and Chemical Engineering, Babes-Bolyai University, RO-400028 Cluj-Napoca, Romania. E-mail: alexandra.m.pop@ubbcluj.ro; Tel: (+40) 264-593833.

Contents

Figures

Figure S1. ¹ H NMR spectra (CDCl ₃ , 400 MHz) of 1 , 3 and 5	S3
Figure S2. ¹ H NMR spectra (CDCl ₃ , 600 MHz) 3 and 7	S3
Figure S3. ¹ H NMR spectra (acetone- d_6 , 600 MHz) of 8 , 9 , 10 and 11	S4
Figure S4. ⁷⁷ Se NMR spectra (CDCl ₃ , 400 MHz) of 1 , 3 and 5	S4
Figure S5. UV-Vis spectra of compounds 5, 8 and 10	S5
Figure S6. UV-Vis spectra of compounds 6, 9 and 11	S5

X-ray diffraction crystallography	S6
Figure S7. Thermal ellipsoids representation at 50% probability of 6	S6
Figure S8. Dimeric association in 6	S6
Figure S9. Best view of the supramolecular leader-like chain of dimers in 5	S7
Figure S10. Best view of the supramolecular chain of dimers in 6	S7
Table S1. Crystal data and details of data collection for 5, 6 and 9	S8

NMR spectra

Figures S11-S13, ¹ H, ¹³ C{ ¹ H} and ⁷⁷ Se{ ¹ H} NMR spectra of 1	. S9
Figure S14, ¹ H NMR spectrum of 2	S10
Figures S15-S17, ¹ H, ¹³ C{ ¹ H} and ⁷⁷ Se{ ¹ H} NMR spectra of 3	S11
Figure S18-S20, 21 H, 13 C{ 1 H} and 77 Se{ 1 H} NMR spectra of 5	S12
Figures S21-S22, ¹ H and ¹³ C{ ¹ H} NMR spectra of 6	S14
Figure S23-26, ¹ H, ¹³ C{ ¹ H}, ⁷⁷ Se{ ¹ H} and ¹⁹ F{ ¹ H} NMR spectrum of 7	S15
Figures S27-S29, ¹ H, ¹³ C{ ¹ H} and ¹⁹ F{ ¹ H} NMR spectra of 8	S17
Figure S30-32, ¹ H, ¹³ C{ ¹ H} and ¹⁹ F{ ¹ H} NMR spectrum of 9	S18
Figures S33-S37, ¹ H, ¹³ C{ ¹ H}, ¹⁹ F{ ¹ H}, ³¹ P{ ¹ H} and ⁷⁷ Se{ ¹ H} NMR spectra of $10 \dots$	S20
Figure S38-41, 21 H, 13 C{ 1 H}, 19 F{ 1 H} and 31 P{ 1 H} NMR spectrum of 11	S22

Figure S2. ¹H NMR spectra (CDCl₃) of 3 (a) and 7 (b)

Figure S4. ⁷⁷Se NMR spectra (CDCl₃, 400 MHz) of **1** (a), **3** (b) and **5** (c)

Figure S5. UV-Vis spectra of compounds 5, 8 and 10 (dichloromethane, $5 \cdot 10^{-5}$ M).

Figure S6. UV-Vis spectra of compounds 6, 9 and 11 (dichloromethane, $5 \cdot 10^{-5}$ M).

Figure S7. Thermal ellipsoids representation at 50% probability of 6. Hydrogen atoms are omitted for clarity.

Figure S8. Dimeric association in **6** [symmetry equivalent position (2-x, 1-y, 2-z) is given by "prime"]. Hydrogen atoms not involved in intermolecular interactions are omitted for clarity. O2…H13' 2.50 Å.

Figure S9. Best view of the supramolecular leader-like chain of dimers build through $\pi \cdots \pi$ interactions in the crystal of **5** (only hydrogen atoms involved in intermolecular interactions are shown). Symmetry equivalent atoms (2-x, 1-y, 2-z), (x, -1+y, z) and (x, 1+y, z) are given by "prime" "a", and "b", respectively. Cg1…Cg2 3.50 Å.

Figure S10. Best view of the supramolecular chain of dimers build through C–H···π interactions in the crystal of 6 (only hydrogen atoms involved in intermolecular interactions are shown). Symmetry equivalent atoms (2-x, 1-y, 2-z), (1-x, 1/2+y, 3/2-z) and (1+x, 1/2-y, 1/2+z) are given by "prime" "double prime", and "triple prime", respectively. O2···H13' 2.50 Å and C–H19A''···Cg1 2.99 Å.

Compound	5	6	9
Empirical formula	$C_{20}H_{19}NO_2Se$	$C_{20}H_{19}NO_2S$	$C_{42}H_{38}Ag_2F_6N_2O_{10}S_4$
Formula weight	384.32	337.42	1188.72
<i>T</i> [K]	100.(2)	100.(2)	100.(2)
Crystal system	monoclinic	monoclinic	monoclinic
Space group	P21/c	P21/c	C2/c
<i>a</i> [Å]	18.3038(11)	18.681(2)	41.589(5)
<i>b</i> [Å]	5.2946(3)	5.2749(6)	13.9962(18)
<i>c</i> [Å]	18.3266(11)	17.908(2)	15.4588(17)
<i>α</i> [°]	90	90	90
β[°]	102.537(2)	104.319(4)	100.215(5)
γ[°]	90	90	90
V [Å ³]	1733.71(18)	1709.8(3)	8855.7(18)
Ζ	4	4	8
ρ_{calcd} [g cm ⁻³]	1.472	1.311	1.783
Absorption coefficient [mm ⁻¹]	2.177	0.201	1.159
Crystal size [mm]	0.057x0.087x0.12	0.089x0.092x0.122	0.012x0.085x 0.132
Θ range for data collection	2.28 to 28.33	2.2503 to 25.7198	2.3301 to 28.2410
Reflections collected	62141	36429	131001
Independent reflections	4317	4226	11010
	[R(int) = 0.1672]	[R(int) = 0.2359]	[R(int) = 0.0571]
Data/restraints/parameters	4317/0/221	36429/0/218	11010/0/597
Final R indices [I>2sigma(I)]	R1 = 0.0452	R1 = 0.0999	R1 = 0.0293
	wR2 = 0.0688	wR2 = 0.1527	wR2 = 0.0518
R indices (all data)	R1 = 0.0929	R1 = 0.2132	R1 = 0.0437
	wR2 = 0.0818	wR2 = 0.1900	wR2 = 0.0571
Goodness-of-fit on F ²	1.088	1.064	1.057
Largest diff. peak/hole / e Å-3	0.551 / -0.480	0.850 / -0.301	0.492 / -0.625

 Table S2. Crystal data and details of data collection for 5, 6 and 9.

Figure S14. ^1H NMR spectrum (CDCl₃, 400.13 MHz, 20 °C) of 2

Figure S20. ⁷⁷Se{¹H} NMR spectrum (CDCl₃, 76.31 MHz, 20 °C) of 5

Figure S26. ${}^{19}F{}^{1}H$ NMR spectrum (CDCl₃, 376.49 MHz, 20 °C) of 7

Figure S32. ¹⁹F{¹H} NMR spectrum (acetone-*d*₆, 564.68 MHz, 20 °C) of **9**

-56 -57 -58 -59 -60 -61 -62 -63 -64 -65 -66 -67 -68 -69 -70 -71 -72 -73 -74 -75 -76 -77 -78 -79 -80 -81 -82 -83 -84 -85 -86 -87 -88 f1 (ppm)

Figure S36. ¹⁹F{¹H} NMR spectrum (acetone-*d*₆, 564.68 MHz, 20 °C) of **10**

Figure S40. ¹⁹F{¹H} NMR spectrum (acetone-*d*₆, 564.68 MHz, 20 °C) of **11**

-120 -122 -124 -126 -128 -130 -132 -134 -136 -138 -140 -142 -144 -146 -148 -150 -152 -154 -156 -158 -160 -162 -164 -16 f1 (ppm)

Figure S41. ³¹P{¹H} NMR spectrum (acetone- d_6 , 242.93 MHz, 20 °C) of **11**