Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2022

Supporting Information

Heterointerface Engineering Constructs Microenvironment Enhancing Catalytic Kinetics

of Fe/Ni oxyhydroxide@FeNi alloy for Overall Water Splitting

Kewen Ma^a, Xueru Chang^a, Renchao Deng^a, Xiao Wu^a, Zehua Wang^a, and Hao Yang*

^aGuangxi Key Laboratory of Electrochemical Energy Materials, School of Chemistry &

Chemical Engineering, Guangxi University, Nanning, 530004, China.

Prof. Hao Yang

Guangxi Key Laboratory of Electrochemical Energy Materials, School of Chemistry &

Chemical Engineering, Guangxi University, Nanning, 530004, China

Email: yanghao@gxu.edu.cn

Figure S1. XRD patterns of FeNi-(1:1) $O_x(OH)_y$ at different deposition currents and deposition time.

Figure S2. Raman spectra of FeNi-(1:1) $O_x(OH)_y$ at different deposition currents and deposition time.

Figure S3. The Tafel slope was calculated at the current density of 100 mA cm⁻² for HER.

Figure S4. LSV, Tafel plots, and Nyquist plots of FeNi-(1:1) $O_x(OH)_y$ at different deposition currents and deposition time.

Figure S5. Charging currents measured in the non-Faradaic potential range of 0 to 0.2 V vs. Ag/AgCl at scan rates of 10, 20, 50, 100, 200 mV/s, FeNi-(1:3) $O_x(OH)_y$ (a), FeNi-(1:1) $O_x(OH)_y$ (b), FeNi-(3:1) $O_x(OH)_y$ (c).

Figure S6. The figure of the polarization curves at different electrolyte temperatures correspond to Arrhenius plots of FeNi-(1:3) $O_x(OH)_y$, FeNi-(1:1) $O_x(OH)_y$, and FeNi-(3:1) $O_x(OH)_y$ for HER.

Figure S7. The XPS survey and Raman spectra of FeNi-(1:1) $O_x(OH)_y$ as cathode for HER after stability test.

Figure S8. The Tafel slope was calculated at the current density of 100 mA cm⁻² for OER.

Figure S9. Nyquist plots for corresponding electrodes for OER.

Figure S10. The figure of the polarization curves at different electrolyte temperatures correspond to Arrhenius plots of FeNi-(1:3) $O_x(OH)_y$, FeNi-(1:1) $O_x(OH)_y$, and FeNi-(3:1) $O_x(OH)_y$ for OER.

Figure S11. Overall water splitting for the device with FeNi-(1:1) $O_x(OH)_y \parallel$ FeNi-(1:1) $O_x(OH)_y$ and 1.5 V battery. The video can be viewed in support materials.

Figure S12. Experimental and theoretical amounts of H_2 and O_2 by the FeNi-(1:1) $O_x(OH)_y$ electrode at a fixed current density of 10 mA cm⁻².

Figure S13. Models of kamacite and $Fe_{0.64}Ni_{0.36}$ were used to simulate the interface in FeNi-(1:3) $O_x(OH)_y$, FeNi-(1:1) $O_x(OH)_y$, FeNi-(3:1) $O_x(OH)_y$.

Table S1

Comparison of the obtained cell voltage in this study with those of the recently reported bifunctional electrocatalysts for overall water-splitting in alkaline solution.

Materials	Electrolyte	Cell voltage (V)	J (mA cm ⁻²)	Ref.
FeNi-(1:1) O _x (OH) _y	1.0 M KOH	1.897	100	This work
W-NiFe	1.0 M KOH	1.59	10	1
NiFe@Co(OH) ₂ NSAs/NF	1.0 M KOH	1.58	10	2
Ce-NiFe-LDH	1.0 M KOH	1.59	10	3
NiFe(OH) _x	1.0 M KOH	1.80	100	4
NiFe-LDH@Ni(OH) ₂	1.0 M KOH	1.80	100	5
Fe-CoNi-LDH	1.0 M KOH	1.81	100	6
Fe(OH) ₃ /β-Ni(OH) ₂	1.0 M KOH	1.83	400	7
NiFeMo alloy	1.0 M KOH	1.75	500	8
NiFe				
oxyhydroxide@NiFe	1.0 M KOH	1.76	1000	9
alloy				

Reference

- L. Ding, K. Li, Z. Xie, G. Yang, S. Yu, W. Wang, H. Yu, J. Baxter, H. M. Meyer, D. A. Cullen and F. Y. Zhang, ACS Appl Mater Interfaces, 2021, 13, 20070-20080.
- C. Cheng, F. Liu, D. Zhong, G. Hao, G. Liu, J. Li and Q. Zhao, *J Colloid Interface Sci.* 2022, 606, 873-883.
- H. S. Jadhav, A. Roy, B. Z. Desalegan and J. G. Seo, *Sustainable Energy Fuels*, 2020, 4, 312-323.
- 4. S. Zhu, G. Duan, C. Chang, Y. Chen, Y. Sun, Y. Tang, P. Wan and J. Pan, ACS Sustainable Chem. Eng. 2020, **8**, 9885-9895.
- 5. N. S. Gultom, H. Abdullah, C.-N. Hsu and D.-H. Kuo, *Chem. Eng. J.* 2021, **419**, 129608.
- 6. Z. Zhai, W. Yan and J. Zhang, *Nanoscale*, 2022, **14**, 4156-4169.
- B. Wu, Z. Yang, X. Dai, X. Yin, Y. Gan, F. Nie, Z. Ren, Y. Cao, Z. Li and X. Zhang, *Dalton Trans.* 2021, **50**, 12547-12554.
- 8. C.-T. Hsieh, C.-L. Huang, Y.-A. Chen and S.-Y. Lu, *Appl. Catal.*, *B*, 2020, **267**, 118376.
- 9. C. Liang, P. Zou, A. Nairan, Y. Zhang, J. Liu, K. Liu, S. Hu, F. Kang, H. J. Fan and C. Yang, *Energy Environ. Sci.* 2020, **13**, 86-95.