Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2023

Electronic Supplementary Information

Design of Deep-Ultraviolet Nonlinear Optical Materials Based on Fundamental Building Blocks with Excellent Microscopic Properties

Jie Zhang,^a Shibin Wang,^a Jianbang Chen,^a Xuchu Huang^{a*}

^a College of Physics and Material Science, Changji University, Changji 931100, China. *Corresponding Authors: hxuchu@163.com

Calculations Details

The electronic and band structures as well as linear optical property calculations were performed by employing CASTEP,¹ a plane-wave pseudopotential DFT package, with the norm-conserving pseudopotentials (NCP).² The exchange-correlation functional was Perdew-Burke-Emzerhoff (PBE) functional within the generalized gradient approximation (GGA).³⁻⁵ The plane-wave energy cutoff was set at 950.0 eV. Self-consistent field (SCF) calculations were performed with a convergence criterion of $0.5 \times 10-6$ eV/atom on the total energy. The k-point separation for each material was set as 0.05 Å⁻¹ in the Brillouin zone,⁶ resulting in corresponding Monkhorst-Pack kpoint meshes. The empty bands are set as 3 times of valence bands in the calculation to ensure the convergence of SHG coefficients. For other calculation parameters and convergence criteria, we retained the default values and used the linear response method to calculate phonon dispersion.

The calculations of the linear optical performance were described in terms of the complex dielectric constant $\varepsilon(\omega) = \varepsilon_1(\omega) + i\varepsilon_2(\omega)$. The imaginary part $\varepsilon_2(\omega)$ of the dielectric function $\varepsilon(\omega)$ was calculated by using momentum matrix elements between the occupied and unoccupied electronic states:

$$\varepsilon_{2}(\mathbf{h}\omega) = \frac{2e^{2}\pi}{\Omega\varepsilon_{0}}\sum_{kcv}\left|\langle\psi_{k}^{c}|\hat{u}\cdot r|\psi_{k}^{v}\rangle\right|^{2}\delta\left[E_{k}^{c}-E_{k}^{v}-E\right]$$

Here Ω is the unit cell volume, ν and c represent the valence band (VB) and conduction band (CB), respectively. ω and \hat{u} are the frequency and the unit vector in the polarization direction of the incident light. Under the periodic boundary condition, $|\langle \psi_k^c | \hat{u} \cdot r | \psi_k^v \rangle|$ is the transition matrix element between the VB and the CB at a specific k point in the first Brillouin zone. The real part $\varepsilon_1(\omega)$ can be obtained from the imaginary part $\varepsilon_2(\omega)$ using the Kramers–Kronig transformation. The refractive indices n and birefringence Δn can be obtained from the complex dielectric function. The SHG coefficients were calculated using the so-called length-gauge formalism derived by Aversa and Sipe.⁷ At zero frequency, the static second-order NLO susceptibilities can be ascribed to the virtual hole (VH) and virtual electron (VE) processes:⁸,

$$\chi^{(2)}_{\alpha\beta\gamma} = \chi^{(2)}_{\alpha\beta\gamma}(\text{VE}) + \chi^{(2)}_{\alpha\beta\gamma}(\text{VH})$$

Where $\chi^{(2)}_{\alpha\beta\gamma}(VE)$ and $\chi^{(2)}_{\alpha\beta\gamma}(VH)$ are computed using the following formulas: $\chi^{(2)}_{\alpha\beta\gamma}(VE) = \frac{e^3}{2h^2m^3} \sum_{vcc'} \int \frac{d^3k}{4\pi^3} P(\alpha\beta\gamma) \operatorname{Im}[p^{\alpha}_{cv}p^{\beta}_{cc'}p^{\gamma}_{c'v}] \times (\frac{1}{\omega^3_{cv}\omega^2_{vc'}} + \frac{2}{\omega^4_{vc}\omega})$ $\chi^{(2)}_{\alpha\beta\gamma}(VH) = \frac{e^3}{2h^2m^3} \sum_{vcc'} \int \frac{d^3k}{4\pi^3} P(\alpha\beta\gamma) \operatorname{Im}[p^{\alpha}_{vv'}p^{\beta}_{vc}p^{\gamma}_{cv}] \times (\frac{1}{\omega^3_{vc}\omega^2_{vc'}} + \frac{2}{\omega^4_{vc}\omega})$

Here,
$$\alpha$$
, β , and γ are the Cartesian components; v/v' and c/c' denote the VBs and CBs;
 $P(\alpha\beta\gamma)$, $h\omega_{ij}$, and p_{ij}^{α} refer to the full permutation, band energy difference, and momentum

matrix elements, respectively.

To balance the calculation efficiency and accuracy of the optical properties under a high-density k-mesh, the GGA and scissors-corrected methods were adopted. The scissors operator was set as the difference between the calculated HSE06 and GGA bandgap. The HSE06 hybrid functional was employed to calculate more accurate bandgap value using the PWmat code,⁹ which were shown to be consistent with experimental results. The polarizability anisotropy ($\Delta \alpha$) and hyperpolarizability ($|\beta_{max}|$)of [B₃O₇], [B₃O₆F] and [B₃O₆F + BO₃] anionic groups in molecular level are calculated using the DFT method implemented by the Gaussian09 package.

In fact, the structure of $Li_2B_3O_5F$ is built based on the known structure $Li_2B_3O_4F_3$. In $Li_2B_3O_4F_3$, the B (1) O₃ group and B (2) O₃F group in $[B_3O_5F_3]$ form a one-dimensional $[B_3O_5F_3]_{\infty}$ chain on the *b-c* plane by sharing O atoms, and the Li atoms are located between the two chains. The one $[BO_3]$ triangle, one $[BO_3F]$ tetrahedra and one $[BO_2F_2]$

tetrahedra are linked through the sharing oxygen atom to form a $[B_3O_5F_3]$ ring, this is the basic building block of Li₂B₃O₄F₃. In Li₂B₃O₅F, the B (1) O₃ group and B (2) O₃F group in $[B_3O_5F]$ form a one-dimensional $[B_3O_6F]_{\infty}$ chain on the *b-c* plane by sharing O atoms, and the Li atoms are located between the two chains. The two $[BO_3]$ triangles and one $[BO_3F]$ tetrahedra are linked through the sharing oxygen atom to form a $[B_3O_6F]$ ring, this is the basic building block of Li₂B₃O₅F. The structure of Li₂B₃O₅F is similar to that of the known crystal Li₂B₃O₄F₃, both of which are crystallized in the $P2_12_12_1$ space group, but with a different FBB. Substitute $[BO_2F_2]$ group in $[B_3O_5F_3]$ group with $[BO_3]$ group to form $[B_3O_6F]$ group, thus forming Li₂B₃O₅F from the known structure Li₂B₃O₄F₃.

			Li ₂ B ₃	O ₅ F					
			P2 ₁ 2 ₁ 2 ₁	(19)					
			Cell para	meters					
<i>a</i> (Å)	<i>b</i> (Å)		<i>c</i> (Å)	α (°)		β (°)	γ (°)		
4.750	8.79	0	12.820	90		90	90		
Fractional coordinates									
Atoms		x		У		Ζ			
Li1	Lil		0.6739	0.6696		0.3799			
Li2	Li2		1.5955	0.1365		0.5908			
B1		1.0817		0.3012		0.6678			
B2		0.9946		0.5205		0.5485			
В3		1.0329		0.5594	0.5594		0.7368		
01		1.0150		0.3645		0.5672			
O2		1.0348		0.6183		0.6364			
O3		1.0131		0.4066		0.7533			
04		1.0564		0.6537	0.6537		0.8211		
05		0.9550		0.5703		0.4530			
F1		1.3837		0.2730		0.6743			
			Bond leng	gths (Å)					
Li1-O2		1.989		Li1-O3		1.969			
Li1-O5		1.850		Li2-O	Li2-O1		2.062		
Li2-04	Li2-O4		2.007	Li2-O5		2.018			
Li2-F1	Li2-F1		1.897	B1-01	B1-O1		1.440		
B1-O3	B1-O3		1.472	B1-O4		1.461			
B1-F1		1.458		B2-O1		1.396			
B2-O2		1.420		B2-05	B2-O5		1.314		
B3-O2		1.388		B3-03	B3-O3		1.363		

Table S1. The crystallographic data of $Li_2B_3O_5F$, including cell parameters, fractional coordinates, bond lengths and bond valence sum (BVS).

B3-O4		1.366						
BVS								
Li1	0.86	Li2	0.89	B1	2.99			
B2	2.96	В3	2.99	O1	1.97			
02	2.05	03	2.04	04	2.03			
05	1.75	F1	0.90					

Table S2 The calculated band gaps, birefringence and d_{ij} of β -BaB₂O₄, LiB₃O₅, NH₄B₄O₆F, CsB₄O₆F and KH₂PO₄ are compared with the experimental values.

Compounds	Space group	Band gap (eV)	Birefringence at 1064 nm	SHG coefficient (pm/V)	Cutoff edge (nm)	Shortest λ _{PM} (nm)
β -BaB ₂ O ₄ ¹⁰	R3c	6.56	0.1	$d_{22} = \pm 2.3$	189	205
β -BaB ₂ O ₄ *	R3c	6.43	0.106	$d_{22} = \pm 2.0$	193	209
LiB ₃ O ₅ ^{10,11}	Pna2 ₁	7.98	0.040	$d_{31} = 0.67$ $d_{32} = 0.85$ $d_{33} = 0.04$	156	276
LiB ₃ O ₅ *	$Pna2_1$	8.20	0.046	$d_{31} = 0.72$ $d_{32} = 0.80$ $d_{33} = 0.05$	152	269
$NH_4B_4O_6F^{12}$	$Pna2_1$	7.95	0.119	1.17	156	158
NH ₄ B ₄ O ₆ F*	$Pna2_1$	7.70	0.107	$d_{31} = 0.02$ $d_{32} = 1.10$ $d_{33} = -1.25$	161	169
$CsB_4O_6F^{13}$	$Pna2_1$	8.00	0.114	0.741	155	172
CsB ₄ O ₆ F*	$Pna2_1$	7.91	0.098	$d_{15} = -0.07$ $d_{32} = 0.95$ $d_{33} = -0.95$	157	177
KH ₂ PO ₄ ^{10,14}	$I\overline{4} 2d$	7.26	0.034	$d_{36} = 0.39$	171	240
KH ₂ PO ₄ *	$I\overline{4} 2d$	7.31	0.044	$d_{36} = 0.35$	170	233
* This work;						

(1) M. D. Segall, P. J. D. Lindan, M. J. Probert, C. J. Pickard, P. J. Hasnip, S. J. Clark, M. C. Payne, *J. Phys.: Condens. Matter.*, 2002, **14**, 2717-2744.

(2) Hamann, D. R., Schlüter, M. & Chiang, C. *Phys. Rev. Lett.*, **43**, 1494-1497 (1979).

(3) J. P. Perdew, K. Burke, M, Ernzerhof, Phys. Rev. Lett., 1996, 77, 3865-3868.

(4) A. M. Rappe, K. M. Rabe, E. Kaxiras, J. D. Joannopoulos, *Phys. Rev. B*, **41**, 1990, 1227-1230.

(5) J. S. Lin, A. Qteish, M. C. Payne, V. Heine, *Phys. Rev. B*, 1993, **47**, 4174-4180.

(6) H. J. Monkhorst, J. D. Pack, Special points for brillouin-zone integrations., *Phys. Rev. B*, 1976, **13**, 5188-5192.

(7) C. Aversa, J. E. Sipe, *Phys. Rev. B*, 1995, **52**, 14636-14645.

(8) J. Lin, M.-H. Lee, Z. P. Liu, C. T. Chen, C. J. Pickard, *Phys. Rev. B*, 1999, **60**, 13380.

(9) W. L. Jia, J. Y. Fu, Z. Y. Cao, L. Wang, L-W. Wang, *J. Comput. Phys.*, 2013, **251**, 102-115.

(10) V. G. Dmitriev, G. G. Gurzadyan, D. N. Nikogosyan, *Handbook of Nonlinear Optical Crystals*, Springer, New York, 1995.

(11) Y. Mori, I. Kuroda, S. Nakajima, T. Sasaki, S. Nnakai, *Appl. Phys. Lett.*, 1993, **67**, 1818.

(12) G. Shi, Y. Wang, F. Zhang, B. Zhang, Z. Yang, X. Hou, S. Pan, K. Poeppelmeier, *J. Am. Chem. Soc.*, 2017, **139**, 10645-10648.

(13) X. Wang, Y. Wang, B. Zhang, F. Zhang, Z. Yang, S. Pan, *Angew. Chem. Int. Ed.*, 2017, **56**, 14119.

(14) J. De Yoreo, A. Burnham, P. Whitman, Int. Mater. Rev., 2002, 47, 113.