Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2022

Supporting Information

Defect engineering in conjugated polyimide for promoting visible-

light-driven photocatalytic benzylamine oxidation

Xin Wang, ^{+ a} Cong Wang, ^{+ c} Le-Heng Chen, ^a Hua-Qiao Tan, ^{* b} Yan-Mei Xing, ^b Hui-Ying Sun, ^b Ying-Nan Zhao, ^b and Dong-En Zhang^a

Dr. X. Wang^a, [+] Dr. C. Wang^c, [+] Prof. H-Q. Tan^b, Dr. Y-M. Xing^b, Dr. H-Y. Sun^b,

Dr. Y-N. Zhao^b, Prof. D-E Zhang^a

^a School of Environmental and Chemical Engineering, Jiangsu Ocean University,

Lianyungang, 222000 (China)

Prof. H-Q. Tan

^b Key Laboratory of Polyoxometalate and Reticular Material Chemistry of Ministry of Education, Faculty of Chemistry, Northeast Normal University, Changchun, 130024 (China)

Dr. C. Wang

^c School of Materials Science and Engineering, Changchun University of Science and

Technology, Changchun, 130022 (China)

E-mail: tanhq870@nenu.edu.cn

[+] These authors contributed equally to this work.

This File Includes:

Materials

Preparation of PI

Characterizations

Electrochemical Analysis

Photocatalysis for selective aerobic oxidation of benzylamine

Photocatalytic hydrogen production

Fig. S1 to S14

Tables S1 to S4

Materials. Melamine (MA), Pyromellitic anhydride (PD), NaHCO₃, Isopropanol (IPA), Triethanolamine (TEOA) β -Carotene, Methanol, Acetonitrile, Superoxide dismutase (SOD), Hydrochloric acid (HCl) were purchased from Aladdin Chemical Co., Ltd., China. The purity of all reagents is analytical (AR) and not further purified.

Preparation of PI. 0.84 g (6.7 mmol) of MA and 2.18 g (10 mmol) of PD were ground in an agate mortar until homogeneous. The mixture was transferred to a covered corundum crucible (semi-closed system) and heated to 325 °C at a heating rate of 7 °C min⁻¹ for 4 h. The resulting solid was ground well and washed with water at 50 °C and alcohol to obtain a yellow powder sample and labeled as PI.

Characterizations. The scanning electron microscope (SEM) image was obtained on a JEOL JSM 4800F SEM. Transmission electron microscopy (TEM) images and HRTEM images were carried out on a JEM-2100F microscope at an acceleration voltage of 200 kV. The Xray diffraction (XRD) patterns were gained on a Bruker AXS D8 Focus with filtered Cu Ka radiation ($\lambda = 1.54056$ Å). Fourier transform infrared (FT-IR) spectra were obtained using a Nicolet iS10 FT-IR spectrometer. X-ray photoelectron spectroscopy (XPS) was tested using an ESCALABMKII spectrometer with an Al-K α achromatic Xray source. N₂ adsorption-desorption isotherms and poresize distributions were obtained at 77 K using a Quanta chrome Auto sorb iQ apparatus. Prior to the experiments, the samples were degassed under vacuum at 120 °C for 12 h. The UV-vis diffuse reflectance spectra (DRS) measurements were gathered on a UV-2600 UV-vis spectrophotometer (Shimadzu), and BaSO₄ was used for a reference. Photoluminescence (PL) spectra were measured on a VARIAN Cary Eclipse spectrophotometer with the excitation wavelength of 380 nm. The electron paramagnetic resonance (EPR) measurements were carried out on a JEOL JES-FA200 spectrometer. Element analysis EMGA-930. is tested on Thermogravimetric/differential thermal (TG/DTA) analysis in air with a heating rate of 7 °C min⁻¹.

Electrochemical Analysis. Electrochemical measurements were conducted with a CHI660E Electrochemical Workstation in a standard three electrode cell using a Pt plate, Ag/AgCl electrode and sample deposited fluoride-tin oxide (FTO) as counter electrode, reference electrode and the working electrode, respectively. The electrolyte solution is 0.2 M Na₂SO₄ aqueous solution. Working electrode manufacturing method is as follows: The 20 mg catalyst is dispersed in 2 ml of ethanol, and then a bulk solution is formed by ultrasound. Transferring suspensions onto a 1×5 cm² FTO conductive glass using a spin-coating method. The exposure area of the catalyst is 3 cm². Finally, working electrode is obtained by drying at room temperature. For photocurrent measurement (*i-t* curves), a 300 W (CELHXF300, AULIGHT) Xe lamp was used as the light source and using a CHI700E electrochemistry station for testing in 0.2 M Na₂SO₄ under visible-light illumination at -0.4 V. The working electrode is irradiated

from the back (FTO substrate) to reduce the effect of the experiments. Electrochemical impedance spectra (EIS) was tested using a CHI700E electrochemistry station in 0.2 M Na_2SO_4 under visible-light illumination with the frequency ranging from 0.01 Hz to 10 kHz at -0.2 V. The EIS data were recorded using a normal three-electrode system, in which samples onto a 1×3 cm² FTO glass with an active area of ca. 2.0 cm² were prepared as the working electrode, Pt wire as a counter electrode, and Ag/AgCl as a reference electrode.

Photocatalysis for selective aerobic oxidation of benzylamine. The photocatalytic reaction was carried out on WATTCAS Parallel Light Reactor (WP-TEC-1020HPL) with 10 W COB LED. 0.2 mmol benzylamine and 5 mL acetonitrile were added into 20 mL quartz tube, 5 mg of catalyst was added for ultrasonic uniform dispersion. The quartz tube is placed under the LED light source of 420-425 nm and reacts for a period of time. After the illumination, the reaction solution was centrifuged and the products in the supernatant were detected by GC-Agilent 7820 chromatography. The chromatographic column was 19091J-413 with a diameter of 30 m × 0.320 mm. The nitrogen flow rate was 6 mL/min and the split ratio was 10:1. We set the temperature of the column box at 80 °C, heat it up to 280 °C at a rate of 66 °C/min, and start to run after keeping it for a period of time.

Photocatalytic hydrogen production. The photocatalytic activities of the as-prepared samples were investigated by the water splitting hydrogen production under visible light irradiation. The photocatalytic water decomposition reaction was carried out in a quartz reaction vessel connected to a closed gas circulation and evacuation system. 10

mg of as-prepared sample was suspended in 60 mL of aqueous solution containing triethanolamine as the sacrificial electron donor. 3 wt % Pt was loaded onto the surface of the catalyst by an in situ photo deposition method using $H_2PtCl_6 \cdot 6H_2O$ as precursor. The suspension was thoroughly degassed and irradiated with a 300 W Xe lamp equipped with a 420 nm cut-off filter. The temperature of the reactant solution was maintained at 283 K by a flow of cooling water during the reaction. The evolved gas was analyzed every 0.5 h by gas chromatography equipped with a thermal conductive detector. For the stability test, the system was evacuated every 3 h and repeated for 4 times. The apparent quantum yield (AQY) for H₂ evolution was carried out in a quartz reaction vessel connected to a closed gas circulation and evacuation system. 10 mg of as-prepared sample was suspended in 60 mL of aqueous solution containing triethanolamine as the sacrificial electron donor. 3 wt% Pt was loaded onto the surface of the catalyst by an in situ photo deposition method using $H_2PtCl_6 \cdot 6H_2O$ as precursor. The suspension was thoroughly degassed and irradiated using 300 W Xe lamp equipped with different band-pass filter ($400 \pm 20 \text{ nm}$, $420 \pm 20 \text{ nm}$, $450 \pm 20 \text{ nm}$, respectively). The spot diameter is 1 cm². The distance between the light and the reaction liquid surface is about 12 cm. The average intensity of irradiation was measured by Beijing Normal University UV-420 optical power meter. The AQY was calculated based on the following equation:

$$AQY = \frac{Ne}{Np} \times \frac{2 \times M \times NA \times h \times c}{S \times P \times t \times \lambda} \times \frac{100\%}{100\%}$$

where Ne is the amount of reaction electrons, Np is the incident photons, M is the

amount of H_2 molecule, N is Avogadro constant, h is the Planck constant, c is the speed of light, S is the irradiation area, P is the intensity of the irradiation, t is the photoreaction time, and λ is the wavelength of the monochromatic light.

Fig. S1 TGA curve of the PI and PI-NaHCO₃ (1:4).

Fig. S2 LSV curves of PI and PI-NaHCO₃ (1:4) under dark and light.

Fig. S3 I-t stability curve of PI and PI-NaHCO₃ (1:4) under visible-light irradiation.

Fig. S4 Time-resolved fluorescence kinetics monitored at the corresponding emission peaks of PI and PI-NaHCO₃ (1:4).

Fig. S5 Image of reactor for photocatalytic selective oxidation of benzylamine.

Fig. S6 The recycling test of PI-NaHCO₃ (1:4) photocatalyst for the LED at 420-425 nm selective aerobic oxidation of benzylamine.

Fig. S7 The XRD after photocatalytic oxidation of benzylamine by PI-NaHCO₃ (1:4).

Fig. S8 The SEM after photocatalytic oxidation of benzylamine by PI-NaHCO₃ (1:4).

Fig. S9 The TEM after photocatalytic oxidation of benzylamine by PI-NaHCO₃ (1:4).

Fig. S10 GC-MS trace of benzaldehyde.

Fig. S11 GC-MS trace of N-benzyl-1-phenylmethanimine.

Fig. S12 Photocatalytic H_2 evolution with PI-NaHCO₃ (1:4) at different sacrificial agents.

Fig. S13 Photocatalytic H₂ evolution with PI-NaHCO₃ (1:4) at different cocatalysts.

Fig. S14 The wavelength dependence of apparent quantum yield (AQY) with PI-NaHCO₃ (1:4) at different irradiation wavelengths.

Sample	C/at%	N/at%	O/at%			
PI	37.27	42.58	20.15			
PI-NaHCO ₃ (1:4)	41.02	47.00	11.98			

Table S1. EDX analysis results of PI and PI-NaHCO₃ (1:4).

Table S2. Elemental analysis results of PI and PI-NaHCO₃ (1:4).

	2		5()	
Sample	C/wt%	N/wt%	O/wt%	H/wt%
PI	56.366	15.001	25.624	3.009
PI-NaHCO ₃ (1:4)	59.279	15.361	21.668	3.692

Table S3. The Fluorescence decay lifetimes and their percentages of photoinduced carriers in the PI and PI-NaHCO₃ (1:4).

 $(y=A_1*exp(-x/\tau_1)+A_2*exp(-x/\tau_2))$

Sample	$\tau_1(ns)$	$\tau_2(ns)$	A_1	A ₂	$\tau_{avg}(ns)$
PI	1.3846	4.2673	6.408	0.144	1.5716
$PI-NaHCO_3(1:4)$	1.1640	/	7.264	/	1.1640

 $\begin{array}{c} & & & \\ &$

Table S4. Photocatalytic oxidation of α -terpinene over PI and PI-NaHCO₃.

Entry	Catalyst	λ (nm)	atmosp here	Time/ h	Conv. ^[a] / %	Α	В	С
						ascari dole	p- cymene	others
1	/	420	Air	5	5.38	trace	5.38	trace
2	PI-NaHCO ₃ (1:4)	/	Air	5	trace	-	-	-
3	PI-NaHCO ₃ (1:4)	420	Ar	5	3.44	trace	3.44	trace
4	PI	420	Air	5	90.73	14.36	71.05	5.32
5	PI-NaHCO ₃ (1:1)	420	Air	5	92.95	27.32	63.43	2.20
6	PI-NaHCO ₃ (1:4)	420	Air	5	100	17.19	79.74	3.07
7	PI-NaHCO ₃ (1:8)	420	Air	5	93.79	13.71	75.12	4.96

Experimental conditions: 5 mL of acetonitrile, 0.1 mmol of α -terpinene, PI-NaHCO₃ (1:4) (5.0 mg) and irradiated with LED at 420-425 nm. [a] Conversion; [b] Selectivity.