Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2023

An Insight into Enhanced Photocatalytic Properties of a Type-II MoS₂/ZnO Heterostructure and Tuning their Properties and Interfacial Charge Transfer by Strain

Dipali Nayak, R. Thangavel*

Condensed Matter Physics Laboratory, Department of Physics, Indian Institute of Technology (Indian School of Mines), Dhanbad-826004, Jharkhand, India *rthangavel@iitism.ac.in

Figure S1: The calculated phonon band structure of the MoS₂ and ZnO monolayers.

Table S1: Summary of the reported MoS₂ and ZnO-based heterostructures and their parameters.

vdW	Band	CBO	VBO	ΔG_H	Mobility (cm ² V ⁻¹ s ⁻¹)		Bandgap	Ref.
neterostructure	anghinent	(0)	(0)	(0)	electron	hole	tuning	
MoS ₂ /ZnO	Type-II	1.55	0.57	-0.03	820	200	Strain	This
								work
MoS_2/ZnO	Type-II	2.49	0.58	-	-	-	-	1
MoS ₂ /ZnO	Type-II	2.49	0.58	-	-	-	-	2
ZnO/WSe ₂	Type-II	-	-	-	480.32	1213.29	Strain	3
WS ₂ /ZnO	Type-II	0.97	0.34	-	-	-	Strain	4
ZnO/SeMoS	Type-II	0.86	0.11	-	-	-	Vertical	5
							strain	

							and	
							electric	
							field	
BlueP/MoS ₂	Type-II	0.79	0.44	-	-	-	-	6
InSe/MoS2	Type-II	-	-	-	-	-	Strain	7
g-ZnO/2H- MoS ₂	Z-scheme	-	-	-	-	-	-	8
MoS ₂ /ZnO	Type-II	-	1.1	-	-	-	Electric field	9
GaN/ZnO	Type-II	-	-	-	-	-	Strain	10
AlN/ZnO	Type-II	-	-	-	-	-	Strain	10
MoS ₂ /BP	Type-I	0.17	0.73	-	-	-	-	11
MoS ₂ /BSe	Type-I	1.09	0.25	-	358.22	188.60	-	12
MoS ₂ /BP	Type-II	0.13	0.91	-	990	27670	Strain	13

Figure S2: The calculated PDOS plot of the MoS_2/ZnO conf-5 heterostructure.

Figure S3: The effect of pH on the water redox potentials for the MoS₂, ZnO monolayers and heterostructures with six stacking patterns.

Text S1: Hydrogen evolution reaction (HER)

To describe the catalytic activity of any semiconductor, the exchange current density (ECD) is a crucial parameter for determining the efficiency of H₂ and O₂ generation in the watersplitting process. The adsorption free energy (AFE) of hydrogen or oxygen atoms directly relates to the ECD. Furthermore, the AFE is the most acceptable descriptor for evaluating the catalytic activity of photocatalysts for their use in the overall water splitting. The hydrogen adsorption energy ($^{E}_{H}$) is obtained by the equation

$$\Delta E_{H} = E_{tot} \left(\frac{MoS_{2}}{ZnO} + H \right) - E_{tot} \left(\frac{MoS_{2}}{ZnO} \right) - \frac{1}{2}E(H_{2})$$

Where, $E_{tot} {MoS_2/_{ZnO} + H}$, $E_{tot} {MoS_2/_{ZnO}}$ and $E(H_2)$ are the energies of the MoS_2/ZnO heterostructure with adsorbed hydrogen, MoS_2/ZnO heterostructure and hydrogen molecule respectively. The Gibb's free energy for the hydrogen adsorption is calculated by the equation;

$$\Delta G_H = \Delta E_H + \Delta E_{ZPE} - T \Delta S_H$$

 ΔE_{ZPE} depicts the zero-point energy difference of the H₂ between adsorbed and the gas phase state; ΔS_H represents the entropy difference between the H₂ gas phase state and adsorbed state. The value of ΔE_{ZPE} is around 0.04 eV for the HER study. Moreover, From the previous reports, $\Delta E_{ZPE} - T\Delta S_H = 0.24 \ eV$ is the acceptable value. The criterion of a semiconductor to be a great photocatalyst for HER activity is that the ΔG_H is close to zero. In addition, according to the reported literature, the optimum value of ΔG_H lies between $|\Delta G_H| \leq 0.25 \ eV$ for an excellent HER activity^{14,15}.

A $3 \times 3 \times 1$ supercell of the MoS₂/ZnO heterostructure is adopted for the study of hydrogen adsorption. We considered four different sites on the basal plane of the heterostructure for hydrogen adoption, i) Mo top, ii) S top, iii) Zn top and iv) O top. Figure S4 depicts the H adsorption on the surface of the MoS₂/ZnO heterostructure. Firstly, the distance between the H atom from the various sites is varied and optimized values are obtained. After that, the AFE is calculated for each site. The calculated values of ΔG_H and the optimized distance of the H atom from the heterostructure surface (d_{surface-H}) is listed in Table S2.

Figure S4: Different hydrogen adsorption sites on the surface of the heterostructure.

Table S2: The optimized surface to adsorbed hydrogen atom distance and ΔG_H for different hydrogen adsorption site.

Hydrogen adsorption site	d _{surface-H} (Å)	ΔG_{H} (eV)
Mo top	1.8	0.21
S top	1.6	-0.03
Zn top	1.8	0.45
O top	1.4	0.16

Figure S5: The electronic band structure of the MoS₂/ZnO heterostructure under biaxial strain.

Figure S6: The partial charge density of the CBM and VBM of the MoS₂/ZnO heterostructure under biaxial strain.

Figure S7: The CDD plot of the heterostructure under biaxial strain.

Figure S8: The band decomposed charge density of the MoS₂/ZnO heterostructure with the variation of the interlayer distance.

Figure S9: Calculated CDD isosurfaces of the MoS₂/ZnO heterostructure with the variation of interlayer distance.

	Element	Х	Y	Ζ
	Mo	0.666667118	0.333332882	0.750000000
MoS_2	S	0.333331441	0.666668559	0.828344968
	S	0.333331441	0.666668559	0.671655032
ZnO	Zn	0.666666000	0.333332000	0.524659588
	0	0.333332000	0.666666000	0.524648487
	Mo	0.6664298050	0.3330758083	0.7500614771
	S	0.3331518506	0.6664611202	0.8275589922
MoS_2/ZnO	S	0.3330813997	0.6663910823	0.6726417600
(com-1)	Zn	0.6836553252 0.3503678654		0.5102406341
	Ο	0.3504216195	0.6837841238	0.5078071366
	Mo	0.673398775	0.339813472	0.748844428
	S	0.340065785	0.673145221	0.826214123
MoS_2/ZnO	S	0.340064801	0.673145292	0.671774619
(cont-2)	Zn	0.339938199	0.673656594	0.524666218
	Ο	0.673272440	0.340319422	0.521810611
	Mo	0.668112348	0.334064134	0.749118813
	S	0.334726452	0.667367221	0.826588069
MoS_2/ZnO	S	0.334738371	0.667373329	0.671805219
(conf-3)	Zn	0.009082965	0.004539000	0.523986088
	0	0.675609864	0.337796316	0.521811812
Mas /7n0	Mo	0.6660769289	0.3321577424	0.7504260592
(conf 4)	S	0.3327531684	0.6655102900	0.8279307821
(0011-4)	S	0.3327063087	0.6654166097	0.6730034820

 Table S3: XYZ files of MoS2 and ZnO monolayers, MoS2/ZnO heterostructure with six configurations.

	Zn	0.0064249564	0.0128486600	0.5096592458
	Ο	0.3398386375	0.6796766979	0.5072904308
	Mo	0.671183846	0.335605068	0.748236609
Mag /7=0	S	0.337869016	0.668950663	0.825705623
MOS_2/ZHO	S	0.337844867	0.668930427	0.671008563
(com-3)	Zn	0.671033174	0.335497643	0.525130655
	Ο	0.004339097	0.002156199	0.523228549
	Mo	0.669049994	0.338106480	0.747996052
Mag /7=0	S	0.335704383	0.671444390	0.825437599
$\frac{1}{1000}$	S	0.335726104	0.671429995	0.670975027
(0011-0)	Zn	0.335322671	0.670619889	0.525841533
	Ο	0.001996848	0.003969247	0.523059789

References

- 1 S. Wang, H. Tian, C. Ren, J. Yu and M. Sun, *Sci Rep*, 2018, **8**, 12009-12015.
- S. Wang, C. Ren, H. Tian, J. Yu and M. Sun, *Physical Chemistry Chemical Physics*, 2018, 20, 13394–13399.
- 3 F. Hu, L. Tao, H. Ye, X. Li and X. Chen, *J Mater Chem C Mater*, 2019, 7, 7104–7113.
- 4 Y. Guan, H. Yao, H. Zhan, H. Wang, Y. Zhou and J. Kang, *RSC Adv*, 2021, **11**, 14085–14092.
- 5 P. Wang, Y. Zong, H. Liu, H. Wen, Y. Liu, H. bin Wu and J. B. Xia, *Physical Chemistry Chemical Physics*, 2021, 23, 1510–1519.
- 6 F. Yang, J. Han, L. Zhang, X. Tang, Z. Zhuo, Y. Tao, X. Cao and Y. Dai, *Nanotechnology*, 2020, **30**, 375706-375715.
- J. Zhang, X. Y. Lang, Y. F. Zhu and Q. Jiang, *Physical Chemistry Chemical Physics*, 2018, 20, 17574–17582.
- 8 T. Ouyang, J. Guo, H. Shen, M. Mu, Y. Shen and X. Yin, *Nanoscale*, 2021, **13**, 18192–18200.
- 9 N. K. Sharma, S. Sahoo, M. C. Sahu, S. K. Mallik, A. K. Jena, H. Sharma, S. K. Gupta, R. Ahuja and S. Sahoo, *Surfaces and Interfaces*, 2022, **29**, 101817-101827.

- 10 Z. Zhang, B. Huang, Q. Qian, Z. Gao, X. Tang and B. Li, *APL Mater*, 2020, **8**, 041114-041123.
- 11 K. Ren, M. L. Sun, Y. Luo, S. K. Wang, J. Yu and W. C. Tang, *Appl Surf Sci*, 2019, **476**, 70–75.
- 12 Y. Luo, K. Ren, S. Wang, J. P. Chou, J. Yu, Z. Sun and M. Sun, *Journal of Physical Chemistry C*, 2019, **123**, 22742–22751.
- 13 M. K. Mohanta, A. Rawat, N. Jena, Dimple, R. Ahammed and A. de Sarkar, *ACS Appl Mater Interfaces*, 2020, **12**, 3114–3126.
- 14 P. Sikam, T. Jitwatanasirikul, T. Roongcharoen, N. Yodsin, J. Meeprasert, K. Takahashi and S. Namuangruk, *Physical Chemistry Chemical Physics*, 2022, **24**, 12909–12921.
- 15 N. K. Oh, J. Seo, S. Lee, H. J. Kim, U. Kim, J. Lee, Y. K. Han and H. Park, *Nat Commun*, 2021, **12**, 4606-4618.