Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2023

Boosting the Electrochemical Performance of ZnO Nanomaterial Through Conductive CuS Matrix for Aqueous Supercapacitors

Khalida Mubeen^{1,2}, Muhammad Zia Ullah Shah^{*2,3}, Muhammad Sajjad^{4,**}, Afshan Irshad¹, Zahid Ali², Zainab Zafar⁵ and A. Shah^{2*}

¹Department of Physics and Mathematics Pakistan Institute of Engineering and Applied Sciences (PIEAS)

²National Institute of Lasers and Optronics College, Pakistan Institute of Engineering and Applied Sciences, Nilore, Islamabad 45650, Pakistan

³Faculty of Materials Science and Engineering, Kunming University of Science and Technology, Kunming 650093, China

⁴College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua 321004, P. R China

⁵Experimental Physics Labs, National Centre for Physics, Islamabad, Pakistan

* Corresponding author. <u>attashah168@gmail.com</u> (A.Shah), <u>ziaullah2331@gmail.com</u> (M. Zia. Shah)

**Corresponding author. E-mail address: <u>sajjadfisica@gmail.com</u> (M. Sajjad)

1. Electrochemical properties of the activated carbon

The CV curves of the AC are given in **Fig. S1**. The CV curves in a potential range of -1.0 to 0.0 V at different scans are shown in **Fig. S1a**. The rectangular CV curves confirm the double-layer capacitive performance of the AC. The enlarged CV current response with upsurge scanning rates demonstrates good capacitive and reversibility. The GCD profile was taken at several discharge currents at a similar potential window (-1.0 to 0.0 V), as depicted in **Fig. S2b**. A capacitance at each draft is summarized in **Table S-1**. The capacitance plot, also given in **Fig. S1c**, exhibited a capacitance of 145 F/g and reached 72 F/g. The current increases concerning capacitance due to time constraints.

Figure S1. (a) CV curves, (b) GCD profile, and (c) capacitance plot.

The equivalent circuit is provided in **Fig. S2**. As can be seen from the circuit, we observed Rs, Rct, Wuzburg impedance (W), and capacitor in the model, which is consistent with the impedance analysis, as discussed in **Fig. 6**.

Figure S2. Circuit model of the impedance plot given in Fig. 6.

2. Morphology and structural stability after the cycling test

It is essential to thoroughly update the morphological and structural changes after succeeding in long-term stability tests, and the outcomes are given in **Fig. S3**. Notably, the morphological breakdown was noticed by characterizing FESEM micrographs (**Fig. S3a, a1**). The sample ZnO nanorods and ZnS nanoparticles are broken, and aggregation on the surface progressively restrict the electrolyte ion's movement, hence, a continuous decline in the lifespan of the G-2 electrode. Additionally, the structural and phase purity after the cycling stability showed no apparent structural change observed after the longevity test (**Fig. S3c**), suggesting the impressive performance of the electrode material.

Figure S3. (a, a1) FESEM diagram, and (c) structural features of the active electrode after long-term cycling stability test.

3. Surface chemistry and oxidation states analysis

The sample's oxidation states and surface chemistry were characterized by x-ray photoelectron spectroscopy (XPS) analysis, as depicted in **Fig. S4**. The overall survey spectra of the G-2 sample are demonstrated in **Fig. S4a**. Based on the survey spectrum, S, O, Cu, and Zn peaks are present in the composite. Meanwhile, a C peak is also detected in the range of the substrate when preparing a sample for the XPS measurements. The high-resolution spectrum of the samples is deconvoluted and is separately shown in **Fig. S4b-e**. The Cu 2p spectrum contained two firm peaks into $2p_{3/2}$ and $2p_{1/2}$ with the binding energies of 932.5 eV and 952.8 eV due to Cu²⁺ and Cu⁺ with two shake-up satellite peaks at 942.7 eV and 963.7 eV, as shown in **Fig. S4b**. Also, a Zn 2p orbital further splits into two peaks at 1024.5 eV and 1046.7 eV binding energies (**see Fig. S4c**). The peak positioned at 161.5 eV, and 162.8 eV arises due to S $2p_{3/2}$ and S $2p_{1/2}$, demonstrating the existence of the sulfur, as displayed in **Fig. S4d**. The oxygen (O) presence was

confirmed from the peaks located at 284.8 eV, and 288 eV was assigned to C=C/C=O, O 1s, binding energy (532.6 eV), as displayed in **Fig. S4e**. According to the brief analysis of the XPS spectrum, it was undoubtedly confirmed that the existence of the elements such as; S, O, Zn, and Cu guarantee the appropriate formation of the composite material.

Figure S4. XPS spectrum of the elements, (a) survey spectra, (b) Cu 2p, (c) Zn 2p, (d) S 2p, and (e) O 1s.