Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2023

Electronic Supplementary Information

CeO₂ modified Li-rich layered oxide cathode with tunable interfacial oxygen for

durable Li-ion batteries

Baolu Wang,^a Li Lu,^a Yanjie Hu,^a Ling Chen,^{*a} Hao Jiang^a

^a Key Laboratory for Ultrafine Materials of Ministry of Education, School of Chemical

Engineering, East China University of Science and Technology, Shanghai 200237,

China

Email: chenling@ecust.edu.cn

1. Experimental Section

1.1 Materials synthesis

Preparation of pristine Li_{1,20}**Mn**_{0.54}**Ni**_{0.13}**Co**_{0.13}**O**₂. The Mn_{0.54}Ni_{0.13}Co_{0.13}CO₃ precursor was fabricated via a co-precipitation method. In brief, 2.0 M mixed solution of NiSO₄·6H₂O, CoSO₄·7H₂O and MnSO₄·H₂O (Mn: Ni: Co= 0.54:0.13:0.13, molar ratio), 2.0 M Na₂CO₃ and 1.5 M NH₄OH were separately pumped into the reactor and keep stirring for 25 h under Ar protection, while the temperature of the reacting mixture was maintained 50 °C. The Mn_{0.54}Ni_{0.13}CO_{0.13}CO₃ precursor was obtained by filtering, washing with distilled water several times and then drying at 120 °C for 24 h. The pristine Li_{1.20}Mn_{0.54}Ni_{0.13}CO_{0.13}O₂ cathode material (denoted as pristine LLO) was prepared by heating stoichiometrically mixed carbonate precursor and Li₂CO₃ (molar ratio of lithium to transition metals = 1.05) at 450 °C for 5 h and 900 °C for 10 h with the heating rate of 10 °C min⁻¹.

Preparation of Li_{1.20}**Mn**_{0.54}**Ni**_{0.13}**Co**_{0.13}**O**₂**@**CeO₂. The preparation processes of Li_{1.20}Mn_{0.54}Ni_{0.13}Co_{0.13}O₂**@**CeO₂ (denoted as LLO@CeO₂) is similar to Pristine LLO. The only difference is that after the reaction of transition metals salt, Na₂CO₃ and NH₄OH for 1 h in the co-precipitation process, the solution of Ce(NO₃)₃ was slowly pumped into the reactor (molar ratio of Ce to transition metals = 0.05) and the mixed solution were then kept stirring for 24 h to obtain Mn_{0.54}Ni_{0.13}CO₃**@**Ce₂(CO₃)₃ precursor. The subsequent calcination process was the same with LLO and finally the product Li_{1.20}Mn_{0.54}Ni_{0.13}Co_{0.13}O₂**@**CeO₂ was prepared.

1.2 Characterization

The morphology and microstructure of products were characterized by scanning electron microscope (SEM, S-4800) and field high resolution transmission electron microscopy (HRTEM; FEI Talos F200X) with accessory of energy disperse X-ray spectroscopy (EDS). The X-ray diffraction (XRD) patterns were recorded on a Bruker D8 Advance X-ray powder diffractometer with Cu K α radiation ($\lambda = 0.154$ nm). The X-ray photoelectron spectra (XPS, Al K α) was employed to study the surface chemistry of the cathodes, and the acquired data were calibrated by means of the C 1 s peak (284.8

eV). The soft XANES measurements with both TEY and FLY modes at the $Mn L_{3,2}$ edges and O K-edge were collected at the BL20A1 beamline in the National Synchrotron Radiation Research Center (NSRRC) and the BL08U beamline in Shanghai Synchrotron Radiation Facility (SSRF).

1.3 Electrochemical measurements

Electrochemical measurements were performed on the basis of coin-type 2016 cells. The working electrode consists of the as-prepared active materials (LLO and LLO@CeO₂), carbon black, and poly (vinyl difluoride) (PVDF) at a weight ratio of 8:1:1, the a few drops of N-Methyl-2-pyrrolidone (NMP) were added and the mixture was kept stirring for 12 h. The obtained slurry was then pasted on pure Al foil with the coating thickness of 100 μ m. The electrode was finally got after drying in a vacuum oven at 120 °C for 24 h and the loading amount of the active materials is ~ 2 mg cm⁻². The cells were assembled in an argon-filled glove box with pure lithium foil was used as the counter electrode, and the separator was a polypropylene membrane (Celgard 2400). The electrolyte consists of a solution of 1.0 M LiPF₆ in ethylene carbonate (EC)/dimethyl carbonate (DMC) (1:1 in volume). The charge and discharge measurements were carried out on a LAND-CT2001C test system at different current densities. Cyclic voltammogram experiments were performed on an Autolab PGSTAT302N electrochemical workstation at a voltage range from 2.0 - 4.8 V.

2. Figures

Fig. S1. In-situ co-precipitation process of the spherical carbonate microparticals of LLO precursor.

Fig. S2 SEM images of (a-b) LLO@CeO₂ and (c-d) pristine LLO.

Fig. S3 (a) TEM image of LLO@CeO2 and its corresponding element distribution of

Fig. S4 HRTEM image of pristine LLO

Fig. S5 CV plots of at various scan rates for (a) LLO@CeO₂ and (b) pristine LLO.

Fig. S6 Plots of the peak current density versus the square root of sweep rate.

3. Tables

Table S1 Proportion of lattice oxygen, oxygen vacancies and surface adsorbed oxygen obtained by means of XPS-peak-differentation-imitating analysis

Sample	Surface adsorbed oxygen (532.6 eV)	Oxygen vacancies (531.1 eV)	Lattice oxygen (529.2 eV)
pristine LLO	63.3%	32.9%	3.8%
LLO@CeO ₂	68.0%	18.9%	13.1%

Table S2 The detailed rate capacity values of the pristine LLO and LLO@CeO2

Sample	pristine LLO (mAh g ⁻¹)	LLO@CeO ₂ (mAh g ⁻¹)
0.1 C	272.2	282.2
0.2 C	238.3	248.6
0.5 C	206.1	231.1
1.0 C	182.0	207.9
2.0 C	138.2	181.1
5.0 C	24.9	124.9

Samples	Current density	Capacity (mAh g ⁻¹)	Ref.
150/HEDEC LLO HO	0.1 C	273.2	1
1570ПЕГЕ 5- LLO-П2	1.0 C	218.4	
WOLLMO	0.1 C	249.8	2
W @LLMO	1.0 C	~ 175	
	0.1 C	276.5	3
LIOWLKWIO	1.0 C	~ 224	
	0.1 C	259	4
W2-LLO	1.0 C	174	
ZT-LLO	0.1C	245.2	5
LRM	0.1 C	250.8	6
	0.2 C	270.3	7
5%G@LIMINCO	5.0 C	119.1	
	0.1 C	209.7	8
S-LINCIVI	1.0 C	157.1	
	0.1 C	282.2	This
	1.0 C	207.9	work

Table S3 Comparisons of electrochemical properties for as-prepared $LLO@CeO_2$ with other LLO cathodes.

References

1. E. Wang, Y. Zhao, D. D. Xiao, X. Zhang, T. H. Wu, B. Y. Wang, M. Zubair, Y. Q. Li, X. L. Sun and H. J. Yu, *Adv. Mater.*, 2020, **32**, 1906070.

J. X. Meng, L. S. Xu, Q. X. Ma, M. Q. Yang, Y. Z. Fang, G. Y. Wan, R. H. Li, J. J. Yuan, X. K. Zhang, H. J. Yu, L. L. Liu and T. F. Liu, *Adv. Funct. Mater.*, 2022, 32, 2113013.

3. J. D. Liu, Z. H. Wu, M. Yu, H. L. Hu, Y. D. Zhang, K. Zhang, Z. X. Du, F. Y. Cheng and J. Chen, *Small*, 2022, **18**, 2106337.

4. Q. Luo, J. K. Kang, Z. J. Liao, X. Y. Feng, H. B. Zou, W. Yang, C. C. Pai, R. W. Y. Sun and S. Z. Chen, *ACS Appl. Energy Mater.*, 2022, **5**, 4641-4650.

5. W. H. Cheng, J. Ding, Z. J. Liu, J. Zhang, Q. C. Liu, X. C. Wang, L. Wang, Z. P. Sun, Y. J. Cheng, Z. J. Xu, Y. H. Lei, J. L. Wang and Y. D. Huang, *Chem. Eng. J.*, 2023, **451**, 138678.

6. C. L. Li, X. P. Cai, X. L. Fu, N. S. Zhang, H. Ding, P. Wang, X. N. Zhou, L. H. Song, J. Huang and S. Y. Li, *J. Alloys Compd.*, 2022, **924**, 166527.

7. M. T. Yu, X. F. Wei, X. Q. Min, A. B. Yuan and J. Q. Xu, *Energy Fuels*, 2022, **36**, 5502-5512.

8. B. Wang, J. Cui, Z. J. Li, H. Wang, D. Zhang, Q. J. Wang, H. L. Sun and Z. L. Hu, *J. Alloys Compd.*, 2022, **929**, 167304.