Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2023

Supporting Information

The Hydroboration of Deoxygenation of Primary, Secondary,

Tertiary Amides and HBpin Catalyzed by NaHBEt₃

Ben Yan,[†] Xiaoli Ma,^{*,†} Ziyuan Pang[†] and Zhi Yang,^{*,†}

[†]School of Chemistry and Chemical Engineering, Beijing Institute of Technology,

Beijing 100081, P. R. China

Table of Contents

General Information2
General Procedure for Hydroboration of Primary Amides2
General Procedure for Hydroboration of Secondary Amides4
General Procedure for Hydroboration of Tertiary Amides6
Control experiments for the mechanistic investigation7
a) Detection of molecular hydrogen in hydroboration of benzamide7
b) Isolation and characterization of intermediate PhCON(Bpin) ₂ 8
c) In situ NMR study to characterize the interaction between PhCON(Bpin) ₂ and
NaHBEt ₃ 10
d) Characterization of in situ generated intermediate imine11
e) Preparation of <i>N</i> , <i>N</i> -diborylated amine upon hydroborylation of benzamide12
f) In situ NMR study to characterize the interaction between HBpin and NaHBEt ₃ 13
g) The study the effect of BH ₃ on the hydroboration reaction of amide14
¹ H, and ¹³ C Spectra of Hydroboration Products of Primary Amides15
¹ H, and ¹³ C Spectra of Hydroboration Products of Secondary Amides
¹ H, and ¹³ C Spectra of Hydroboration Products of Tertiary Amides
Refrences42

General Information.

All operations during the experiment were performed in a pure N_2 atmosphere using Schlenk technics or inside a Mbraun MB 150-GI glove box. Commercially available chemicals were purchased from J&K chemical reagents company or Aldrich reagents company, and stored and used according to the instructions. The NMR spectra were provided using the Bruker Ascend II 400 spectrometer.

General Procedure for Hydroboration of Primary Amides.

In a 10 ml Schlenk flask equipped with a magnetic stir bar in the glovebox, primary amide (0.5 mmol), pinacolborane (2.2 mmol, 4.4 eq) and NaHBEt₃ (0.025 mmol) were combined and heated in an oil bath at 60 °C for 12 h. The reaction mixture was hydrolyzed with 1 M HCl in ether (10 mL). The volatiles were removed under reduced pressure, and the residue was washed with ethyl acetate (3×5 mL) to give a pure desired product as an ammonium salt. The ¹H NMR and ¹³C NMR spectra of the isolated ammonium salts were recorded in D₂O.

2a

NH₂•HCI

¹H NMR (400 MHz, D₂O): δ 7.31 (s, 5H, -CH₂Ph), 4.03 (s, 2H, -CH₂Ph). ¹³C NMR (101 MHz, D₂O): δ 132.62, 129.23, 128.81, 43.15.

2b

NH₂•HCI

F⁻ ¹H NMR (400 MHz, D₂O): δ 7.42 (s, 2H, -CH₂PhF), 7.15 (s, 2H, -CH₂PhF), 4.12 (s, 2H, -CH₂PhF). ¹³C NMR (101 MHz, D₂O): δ 164.09, 161.65, 131.00, 128.81, 115.88, 42.51.

2c

Cl¹ ¹H NMR (400 MHz, D₂O): δ 7.44 (d, J = 7.8 Hz, 2H, -CH₂PhCl), 7.39 (d, J = 8.1 Hz, 2H, -CH₂PhCl), 4.14 (s, 2H, -CH₂PhCl). ¹³C NMR (101 MHz, D₂O): δ 134.56, 131.23, 130.49, 129.21, 42.50.

2d

2e

¹H NMR (400 MHz, D₂O): δ 8.25 (d, J = 8.6 Hz, 2H, -CH₂*Ph*NO₂), 7.64 (d, J = 8.6 Hz, 2H, -CH₂*Ph* NO₂), 4.31 (s, 2H, -CH₂PhNO₂). ¹³C NMR (101 MHz, D₂O): δ 147.96, 139.89, 129.85, 124.27, 42.33.

2f

MeO ¹H NMR (400 MHz, D₂O): δ 7.35 (d, J = 7.2 Hz, 2H, -CH₂PhOMe), 6.99 (d, J = 7.1 Hz, 2H, -CH₂PhOMe), 4.07 (s, 2H, -CH₂PhOMe), 3.78 (s, 3H, -CH₂PhOMe). ¹³C NMR (101 MHz, D₂O): δ 159.42, 130.58, 125.23, 114.60, 55.44, 42.64.

2g

¹H NMR (400 MHz, D₂O): δ 7.28 (d, J = 8.5 Hz, 4H, -CH₂*Ph*Me), 4.09 (s, 2H, -CH₂PhMe), 2.30 (s, 3H, -CH₂PhMe). ¹³C NMR (101 MHz, D₂O): δ 139.63, 129.77, 128.88, 42.90, 20.27.

2h

¹H NMR (400 MHz, D₂O): δ 7.34 (t, J = 7.3 Hz, 1H, -CH₂PhMe), 7.29-7.15 (m,

3H, -CH₂*Ph*Me), 4.10 (s, 2H, -C*H*₂PhMe), 2.33 (s, 3H, -CH₂Ph*Me*). ¹³C NMR (101 MHz, D₂O): δ 139.50, 132.86, 129.79, 129.34, 129.18, 125.69, 43.13, 20.38.

2i

NH₂•HCI

¹H NMR (400 MHz, D₂O): δ 7.68-7.09 (m, 4H, -CH₂PhMe), 4.18 (s, 2H, -CH₂PhMe), 2.33 (s, 3H, -CH₂PhMe). ¹³C NMR (101 MHz, D₂O): δ 137.22, 130.97, 130.89, 129.41, 129.05, 126.66, 40.50, 18.03.

NH2•HCI

F ¹H NMR (400 MHz, D₂O): δ 7.46 (d, J = 5.6 Hz, 2H, -CH₂PhF), 7.24 (dd, J = 12.9, 8.3 Hz, 2H, -CH₂PhF), 4.23 (s, 2H, -CH₂PhF). ¹³C NMR (101 MHz, D₂O): δ 162.18, 159.74, 131.75, 131.25, 125.02, 119.51, 115.92, 37.28, 37.24.

2k

NH₂•HCl ¹H NMR (400 MHz, D₂O): δ 2.88 (d, *J* = 7.3 Hz, 2H, -CH₃CH₂), 1.11 (t, *J* = 7.3 Hz, 3H, -CH₃CH₂). ¹³C NMR (101 MHz, D₂O): δ 34.97, 11.82.

21

NH₂•HCI

¹H NMR (400 MHz, D₂O): δ 2.81 (d, J = 7.1 Hz, 2H, -CH₂CH(CH₃)₂), 1.91 (dt, J = 13.7, 6.8 Hz, 1H, -CH₂CH(CH₃)₂), 0.95 (d, J = 6.7 Hz, 6H, -CH₂CH(CH₃)₂). ¹³C NMR (101 MHz, D₂O): δ 46.40, 26.30, 18.86.

2m

NH₂•HCI

¹H NMR (400 MHz, D₂O): δ 2.81 (d, J = 7.0 Hz, 2H, -CH₂C₆H₁₁), 1.70 (d, J =

11.7 Hz, 4H, -CH₂C₆ H_{11}), 1.62 (d, J = 10.5 Hz, 2H, -CH₂C₆ H_{11}), 1.18 (dt, J = 24.1, 12.4 Hz, 3H, -

CH₂C₆*H*₁₁), 0.97 (t, *J* = 10.7 Hz, 2H, -CH₂C₆*H*₁₁). ¹³C NMR (101 MHz, D₂O): δ 45.21, 35.40, 29.63, 25.58, 25.03.

2n

NH₂•HCl ¹H NMR (400 MHz, D₂O): δ 3.20-2.73 (m, 2H, -CH₂(CH₂)₃CH₂CH₃), 1.87-

1.47 (m, 2H, -CH₂(CH₂)₃CH₂CH₃), 1.40-1.16 (m, 6H, -CH₂(CH₂)₃CH₂CH₃), 0.86 (t, J = 6.9 Hz, 3H, -CH₂(CH₂)₃CH₂CH₃). ¹³C NMR (101 MHz, D₂O): δ 39.64, 30.48, 26.70, 25.26, 21.79, 13.32.

20

¹H NMR (400 MHz, D₂O): δ 7.47 (d, J = 5.1 Hz, 1H, -CH₂C₄SH₃), 7.20 (d, J =

3.3 Hz, 1H, -CH₂C₄SH₃), 7.10-7.03 (m, 1H, -CH₂C₄SH₃), 4.35 (s, 2H, -CH₂C₄SH₃). ¹³C NMR (101 MHz, D₂O): δ 134.08, 129.49, 127.95, 127.78, 37.50.

General Procedure for Hydroboration of Secondary Amides.

In a 10 ml Schlenk flask equipped with a magnetic stir bar in the glovebox, secondary amide (0.5 mmol), pinacolborane (1.5mmol, 3.0 eq) and NaHBEt₃ (0.025 mmol) were combined and heated in an oil bath at 60 °C for 12 h. The reaction mixture was hydrolyzed with 1 M HCl in ether (10 mL). The volatiles were removed under reduced pressure, and the residue was washed with ethyl acetate (3×5 mL) to give a pure desired product as an ammonium salt. The ¹H NMR and ¹³C NMR spectra of the isolated ammonium salts were recorded in D₂O.

4a

¹H NMR (400 MHz, D₂O): δ 7.51-7.45 (m, 3H, *Ph*), 7.43-7.34 (m, 3H, *Ph*), 7.31-7.24 (m, 4H, *Ph*), 4.58 (s, 2H, -*CH*₂). ¹³C NMR (101 MHz, D₂O): δ 133.86, 130.41, 130.22, 129.94, 129.82, 129.11, 123.00, 55.59.

4b

¹H NMR (400 MHz, D₂O): δ 7.55-7.26 (m, 10H, *Ph*), 4.22 (s, 4H, *CH*₂). ¹³C NMR (101 MHz, D₂O): δ 130.83, 129.87, 129.68, 129.32, 50.59.

4c

¹H NMR (400 MHz, D₂O): δ 7.42 (s, 5H, *Ph*), 4.15 (s, 2H, *CH*₂), 2.66 (s, 3H, *CH*₃). ¹³C NMR (101 MHz, D₂O): δ 130.70, 129.71, 129.68, 129.27, 52.38, 32.06.

4d

131.95, 126.82, 116.21, 115.99, 51.65, 32.06.

F ¹H NMR (400 MHz, D₂O): δ 7.45 (dd, J = 8.2, 5.4 Hz, 2H, *Ph*), 7.18 (t, J = 8.8 Hz, 2H, *Ph*), 4.16 (s, 2H, *CH*₂), 2.68 (s, 3H, *CH*₃). ¹³C NMR (101 MHz, D₂O): δ 164.41, 161.97, 132.03,

4e

Br⁻¹H NMR (400 MHz, D₂O): δ 7.60 (d, *J* = 8.3 Hz, 2H, *Ph*), 7.33 (d, *J* = 8.3 Hz, 2H, *Ph*), 4.14 (s, 2H, *CH*₂), 2.67 (s, 3H, *CH*₃). ¹³C NMR (101 MHz, D₂O): δ 132.28, 131.60, 130.02, 123.31, 51.74, 32.22.

4f

¹H NMR (400 MHz, D₂O): δ 7.53 (d, J = 7.6 Hz, 3H, *Ph*), 7.42 (d, J = 6.9 Hz, 2H, *Ph*), 3.43 (q, J = 7.3 Hz, 2H, *CH*₂), 1.26 (t, J = 7.3 Hz, 3H, *CH*₃). ¹³C NMR (101 MHz, D₂O): δ 134.38, 130.36, 129.92, 122.56, 47.33, 10.26.

4g

¹H NMR (400 MHz, D₂O): δ 7.55 (s, 5H, *Ph*), 4.27 (s, 2H, *CH*₂), 3.19 (q, *J* = 7.3 Hz, 2H, *CH*₂), 1.36 (t, *J* = 7.3 Hz, 3H, *CH*₃). ¹³C NMR (101 MHz, D₂O): δ 131.06, 129.70, 129.60, 129.29, 50.66, 42.49, 10.55.

4h

¹H NMR (400 MHz, D₂O): δ 3.30-3.13 (m, 2H, -NC₆H₁₀), 1.81 (s, 2H, -NC₆H₁₀), 1.64 (s, 2H, -NC₆H₁₀). ¹³C NMR (101 MHz, D₂O) δ 45.21, 35.40, 29.63, 25.58, 25.03.

General Procedure for Hydroboration of Tertiary Amides.

In a 10 ml Schlenk flask equipped with a magnetic stir bar in the glovebox, tertiary amide (0.5 mmol), pinacolborane (1.5mmol, 3.0 eq) and NaHBEt₃ (0.025 mmol) were combined and heated in an oil bath at 60 °C for 12 h. The reaction mixture was hydrolyzed with 1 M HCl in ether (10 mL). The volatiles were removed under reduced pressure, and the residue was washed with ethyl acetate (3×5 mL) to give a pure desired product as an ammonium salt. The ¹H NMR and ¹³C NMR spectra of the isolated ammonium salts were recorded in D₂O.

6a

HCI

Ň

¹H NMR (400 MHz, D₂O): δ 2.74 (s, 9H, CH₃). ¹³C NMR (101 MHz, D₂O): δ 44.78.

¹H NMR (400 MHz, D₂O): δ 7.47-7.17 (m, 5H, *Ph*), 3.43 (s, 2H, *CH*₂), 2.12 (s, 6H, *CH*₂). ¹³C NMR (101 MHz, D₂O): δ 137.45, 129.92, 128.47, 127.61, 62.75, 43.59.

Control experiments for the mechanistic investigation.

To understand the mechanism associated with hydroboration of primary amide, we have carried out a series of experimental studies as mentioned below.

a) Detection of molecular hydrogen in hydroboration of benzamide.

In a glovebox, an oven dried screw-cap NMR tube was charged with benzamide (12.10 mg, 0.10 mmol, 1.0 equivalent)), HBpin (25.56 mg, 0.20 mmol, 2.0 equivalent), and CDCl₃ (500 μ L) and reacted at room temperature for 30 min. H₂ production was observed and subsequently characterized by ¹H NMR spectroscopy. A sharp resonance at δ 4.46 ppm in ¹H NMR spectrum indicates the formation of molecular hydrogen (Scheme S1 and Figure S1).

Scheme S1. Detection of molecular hydrogen in hydroboration of benzamide.

Figure S1. ¹H NMR spectrum of molecular hydrogen recorded in CDCl₃ for hydroboration of benzamide.

b) Isolation and characterization of intermediate PhCON(Bpin)₂

In a glovebox, benzamide (0.25 mmol), HBpin (0.5 mmol, 2.0 equivalent)), and THF (1 mL) were added in a Schlenk flask. The reaction mixture was stirred at ambient temperature overnight. Removal of the volatiles under reduced pressure afforded a white powder, which was washed with *n*-hexane for three times. Drying up the residue gave a white solid. The borylated-amide compound PhCON(Bpin)₂ was isolated by recrystallization from THF/hexane, and was characterized by ¹H, ¹³C, and ¹¹B NMR spectroscopy (**Scheme S2** and Figures S2-S4)

Figure S3. ¹³C NMR spectrum of intermediate PhCON(Bpin)₂

Figure S4. ¹¹B NMR spectrum of intermediate PhCON(Bpin)₂

c) In situ NMR study to characterize the interaction between PhCON(Bpin)₂ and NaHBEt₃.

In a glovebox, PhCON(Bpin)₂ (0.25 mmol), NaHBEt₃ (0.25 mmol, 1.0 equivalent), and CDCl₃ (500 μ L) in a Schlenk flask and reacted at room temperature for overnight. Next, the interaction between PhCON(Bpin)₂ and NaHBEt₃ was characterized through ¹H and ¹¹B NMR spectroscopies. In ¹H NMR spectrum, ~ δ 4.5 ppm was observed as compared to that of PhCON(Bpin)₂. And in ¹¹B NMR spectroscopy comparison with PhCON(Bpin)₂ shows several new peaks, 87.2 ppm (BEt₃) ^[S1], 47.5 ppm, 3.77 ppm. These observations clearly suggest the interaction between two compounds which is consistent with result reported by Ramachandaran ^[S2]. And there is an interconversion of two intermediates with ¹¹B NMR spectra corresponding to 47.5 ppm and 3.77 ppm, respectively (Scheme S3 and Figures S5-S6).

Scheme S3. Preparation and isolation of intermediate PhCON(Bpin)₂

Figure S5. ¹H NMR spectrum of the reaction of PhCON(Bpin)₂ and NaHBEt₃

Figure S6. ¹¹B NMR spectrum of the reaction of PhCON(Bpin)₂ and NaHBEt₃

d) Characterization of in situ generated intermediate imine.

In a glovebox, benzamide (0.25 mmol), HBpin (1.0 mmol, 4.0 equivalent) and NaHBEt₃ (0.0125 mmol) in a Schlenk flask and reacted at 60 °C for 4 hours. Next, all volatiles were removed using high vacuum and ¹H NMR spectroscopy of the reaction mixture was recorded in CDCl₃. A sharp resonance at δ 10.21 ppm for benzamide was observed in ¹H NMR spectrum, which clearly indicates the formation of an imine intermediate (Scheme S4 and Figure S7).

Scheme S4. Synthetic scheme for the formation of intermediate imine.

Figure S7. ¹H NMR spectrum of in situ generated *N*-borylated imine recorded in CDCl₃.

e) Preparation of *N*,*N*-diborylated amine upon hydroborylation of benzamide.

In a 10 ml Schlenk flask equipped with a magnetic stir bar in the glovebox, primary amide (0.5 mmol), pinacolborane (2.2 mmol, 4.4 eq) and NaHBEt₃ (0.025 mmol) were combined and heated in an oil bath at 60 °C for 12 h. After completion of the reaction ¹H NMR was recorded in CDCl₃ (**Scheme S5** and Figure S8).

Scheme S5. Synthetic scheme for the formation of *N*,*N*-diborylated amine from benzamide.

Figure S8. ¹H NMR spectrum of the reaction of benzamide with HBpin catalyzed by NaHBEt₃.

f) In situ NMR study to characterize the interaction between HBpin and NaHBEt₃.

In a 10 ml Schlenk flask equipped with a magnetic stir bar in the glovebox, pinacolborane (2.2 mmol, 4.4 eq) and NaHBEt₃ (0.025 mmol) were combined and heated in an oil bath at 60 °C for 30 min. After completion of the reaction ¹¹B NMR was recorded in CDCl₃, we can find that a new quadruple peak around δ = -13 ppm reveals the presence of BH₃. (Scheme S6 and Figure S9).

Scheme S6. The formation of BH₃ from HBpin and NaHBEt₃.

HBpin $5 \text{ mol}\% \text{ NaHBEt}_3 \rightarrow \text{BH}_3$ 60 °C, 30 min

Figure S9. ¹¹B NMR spectrum of the reaction of with HBpin with NaHBEt₃.

g) The study the effect of BH₃ on the hydroboration reaction of amide

In a 10 ml Schlenk flask equipped with a magnetic stir bar in the glovebox, primary amide (0.5 mmol), pinacolborane (2.2 mmol, 4.4 eq) and catalyst **X** (5 mol%) were combined and heated in an oil bath at 60 °C for 12 h. After completion of the reaction ¹H NMR was recorded in CDCl₃ and calculated its yield (**Scheme S7**, Figure S10 and Table **1**). For the mentioned reaction, the yield of product is up to 92% in the presence of TMEDA (95% for without TMEDA). When only BH₃·SMe₂ as catalyst which is consistent with the amount of reaction of HBpin and NaHBEt₃, we cannot find any reaction. Even if the amount of BH₃·SMe₂ is raised to 5%, only 7% product is obtained. We also investigated the effect of BEt₃ and found that BEt₃ does not act as a catalyst for this reaction. These results suggest for the noninvolvement or very less influence of BH₃ and BEt₃ as an active catalyst for the hydroboration of benzamide.

Scheme S7. Synthetic scheme for the hydroboration of benzamide in presence of catalyst X.

Table1. The hydroboration reaction of benzamide with HBpin in the presence of X

X (5 mol%)	Yield
NaHBEt ₃	95%
NaHBEt ₃ + TMEDA (1:2)	91%
$BH_3 \cdot SMe_2^a$	n.d.
$BH_3 \cdot SMe_2^b$	7%
BEt ₃	n.d.

^{*a*} 0.3 mol% BH₃·SMe₂ which quantity is consistent with BH₃ that reaction of with HBpin with NaHBEt₃; ^{*b*} 5 mol% BH₃·SMe₂

Figure S10. ¹H NMR spectrum of the reaction of $PhCONH_2$ and HBpin as **X** as a catalyst

¹H, and ¹³C Spectra of Hydroboration Products of Primary Amides

Figure S1.1.2 $^{13}\mathrm{C}$ NMR of compound 2a in $D_2\mathrm{O}$

Figure S1.2.2 $^{13}\mathrm{C}$ NMR of compound 2b in $D_2\mathrm{O}$

Figure S1.3.1 ¹H NMR of compound 2c in in D₂O

Figure S1.3.2 $^{13}\mathrm{C}$ NMR of compound 2c in $D_2\mathrm{O}$

Figure S1.4.1 $^1\mathrm{H}$ NMR of compound $\mathbf{2d}$ in $\mathrm{D_2O}$

Figure S1.4.2 $^{\rm 13}C$ NMR of compound 2d in D_2O

Figure S1.5.2 $^{13}\mathrm{C}$ NMR of compound 2e in in D2O

Figure S1.6.2 $^{13}\mathrm{C}$ NMR of compound 2f in $D_2\mathrm{O}$

Figure S1.7.2 $^{13}\mathrm{C}$ NMR of compound 2g in $D_2\mathrm{O}$

Figure S1.8.2 $^{13}\mathrm{C}$ NMR of compound 2h in $D_2\mathrm{O}$

Figure S1.9.2 $^{13}\mathrm{C}$ NMR of compound 2i in $D_2\mathrm{O}$

S25

Figure S1.12.2 $^{\rm 13}C$ NMR of compound **21** in D₂O

Figure S1.13.2 13 C NMR of compound **2m** in in D₂O

Figure S1.15.2 $^{13}\mathrm{C}$ NMR of compound 2o in $D_2\mathrm{O}$

¹H, and ¹³C Spectra of Hydroboration Products of Secondary Amides

Figure S2.1.1 ¹H NMR of compound 4a in D₂O

Figure S2.1.2 $^{13}\mathrm{C}$ NMR of compound 4a in D2O

50 145 140 135 130 125 120 115 110 105 100 95 90 85 80 75 70 65 60 55 50 45 40 35 30 25 20 15 10 5 0 11 (ppm)

Figure S2.2.2 $^{13}\mathrm{C}$ NMR of compound 4b in $D_2\mathrm{O}$

Figure S2.3.2 $^{13}\mathrm{C}$ NMR of compound 4c in $D_2\mathrm{O}$

Figure S2.4.2 $^{\rm 13}C$ NMR of compound 4d in D_2O

S35

Figure S2.6.2 ^{13}C NMR of compound 4f in $D_2\text{O}$

Figure S2.7.2 13 C NMR of compound **4g** in D₂O

S38

¹H, and ¹³C Spectra of Hydroboration Products of Tertiary Amides

Figure S3.1.2 13 C NMR of compound **6a** in D₂O

Figure S3.2.2 $^{\rm 13}C$ NMR of compound **6b** in D₂O

Figure S3.3.2 $^{13}\mathrm{C}$ NMR of compound 6c in $D_2\mathrm{O}$

Refrences

- [S1] D. Peng, M. Zhang, Z. Huang, Chem. Eur. J., 2015, 21(42), 14737-14741.
- [S2] P. V. Ramachandran and D. Biswas, Org. Lett., 2007, 9, 3025-3027.