Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2023

Supplementary Information

Self-sacrificing strategy to fabricate fluorine-modified integrated

silicon/carbon anode for high-performance lithium-ion batteries

Jiangzhi Xiong,^a Peng Xiao,^{*ab} Jian Luo,^a Yangjie Li,^a Peng Zhou,^a Liang Pang, ^a Xilei Xie^a

and Yang Li^{ab}

^a Powder Metallurgy Research Institute, Central South University, Changsha, 410083,

China

^b National Key Laboratory of Science and Technology for National Defence on Highstrength Structural Materials, Central South University, Changsha, 410083, China

*Corresponding author.

E-mail address: xiaopeng@csu.edu.cn (P. Xiao)

Figure Captions

Fig. S1 XPS spectra of F-SC: (a) survey scanning spectrum, (b) C1 s, (c) Si 2 p and (d) F1 s.

Fig. S2 O 1s XPS spectra of F-SC

Fig. S3 SEM and TEM of Si NPs

Fig. S4 CV curves of SSC at scanning rate of 0.1 mV s⁻¹ between 0.01 and 1.5 V (vs Li/Li⁺)

Fig. S5 Comparison of ICE with reported studies in literature

Fig. S6. The equivalent circuit diagrams (a) before and (b) after the cycle

Fig. S7. Representative lithiation/delithiation voltage profiles of F-SC at 0.5 A g⁻¹

Fig. S8. high magnification surface morphology of F-SC electrode before (a), after 100 cycles (b) and after 200 cycles (c) at 0.5 A g^{-1}

Fig. S9. Microscopic morphology before and after electrode cycling. Surface morphology of SSC

electrode before (a) and after 200 cycles (b) at 0.5 A g⁻¹. Cross-sectional SEM images of SSC

electrode before (c) and after 200 cycles (d) at 0.5 A g⁻¹. Variation of electrode thickness

Table Captions

Table S1 Atomic percentage of each element in XPS spectra.

Table S2 Kinetic parameters of Si NPs、 F-SC and SSC composites electrodes.

Table S3 Comparison of performances of Si@void@C composites for lithium-ion batteries.

		Binding Energy (eV)	Atomic (%)
F-SC	Si 2p	103~	11.07
	C 1s	285~	78.54
	O 1s	533~	9.71
	F 1s	687~	0.68
SSC	Si 2p	103~	14.51
	C 1s	285~	73.22
	O 1s	533~	11.82
	F 1s	687~	0.45

(a) (b) C 1s C 1s Intensity (Counts/s) C-C Intensity (a.u.) ls 0 C-0-0 - Si 2s -Si 2p Si-C C-F 1200 292 1000 800 600 400 200 290 288 286 284 282 280 0 (d) **Binding energy (eV)** (c) Binding energy (eV) F 1s Si 2p Si-C Intensity (a.u.) Intensity (a.u.) covalent C-F Si-O, semi-ionic C-F 101 107 105 103 99 692 690 688 686 Binding energy (eV) **Binding energy (eV)**

Fig. S1 XPS spectra of F-SC: (a) survey scanning spectrum, (b) C 1 s, (c) Si 2 p

and (d) F 1 s

Table S1. Atomic percentage of each element in XPS spectra

Fig. S2 O 1s XPS spectra of F-SC

Fig. S3 (a) $_{\smallsetminus}\,$ (b) SEM and (c) TEM of Si NPs

Fig. S4 CV curves of SSC at scanning rate of 0.1 mV s⁻¹ between 0.01

and 1.5 V (vs Li/Li⁺)

Fig. S5 Comparison of ICE with reported studies in literature¹⁻¹⁰

Fig. S6. The equivalent circuit diagrams (a) before and (b) after the cycle

113 (32)	111 (32)	100 (32)
1.182	_	175.5
3.454	25.98	101.8
1.255	—	138.3
6.158	41.71	46.17
1 225	_	90 42
1.225		50.12
1.899	68.58	39.85
	1.182 3.454 1.255 6.158 1.225 1.899	1.182 3.454 25.98 1.255 6.158 41.71 1.225 1.899 68.58

Table S2. Kinetic parameters of Si NPs、 F-SC and SSC composites electrodes.

Fig. S7. Representative lithiation/delithiation voltage profiles of F-SC at 0.5 A g⁻¹

Fig. S8. high magnification surface morphology of F-SC electrode before (a), after 100

cycles (b) and after 200 cycles (c) at 0.5 A $g^{\mbox{-}1}$

Fig. S9. Microscopic morphology before and after electrode cycling. Surface morphology of SSC electrode before (a) and after 200 cycles (b) at 0.5 A g⁻¹. Cross-sectional SEM images of SSC electrode before (c) and after 200 cycles (d) at 0.5 A g⁻¹.

Variation of electrode thicknes

	Etching	Cycle Performance				
Template		Current	Cycle Number	Discharge	initial	Ref.
		Density		Capacity	coulombic	
		(mA·g⁻¹)		(mAh∙g⁻¹)	efficiency (%)	
SiO ₂	Yes	100	200	1113	71	1
SiO ₂	Yes	500	500	972	67.4	2
SiO ₂	Yes	100	300	705	79	3
PEI	No	200	200	854		11
SiO ₂	Yes	200	300	587	79	4
SiO ₂	Yes	100	100	767		12
Colloidal	No	100	200	749	49	6
SiO ₂	Yes	1000	100	940	65	7
PS	No	200	100	710	60	8
SiO ₂	Yes	200	200	1129	64	9
SiO ₂	Yes	1000	200	1020	68.2	10
<mark>СТАВ</mark>	<mark>No</mark>	<mark>500</mark>	<mark>100</mark>	<mark>1444</mark>	<mark>83.3</mark>	This -
		<mark>1000</mark>	<mark>400</mark>	<mark>1013</mark>		work

Table S3. Comparison of performances of Si@void@C composites for lithium-ionbatteries.

References

- L. Hu, B. Luo, C. H. Wu, P. F. Hu, L. Z. Wang and H. J. Zhang, *J.Energy Chem.*, 2019, **32**, 124-130.
- 2 N. T. Liu, J. Liu, D. Z. Jia, Y. D. Huang, J. Luo, X. Mamat, Y. Yu, Y. M. Dong and G. Z. Hu, *Energy Stor. Mater.*, 2019, **18**, 165-173.
- 3 K. Min, K. Kim, H. An, Y. Go, Y. Lee, D. Lim and S.-H. Baeck, *J. Power Sources*, 2022, **543**, 231849.
- 4 Y. He, F. Han, F. Wang, J. Tao, H. Wu, F. Zhang and J. Liu, *Electrochim. Acta*, 2021, **373**, 137924.
- 5 L. Pan, H. Wang, D. Gao, S. Chen, L. Tan and L. Li, *Chem. Commun.*, 2014, **50**, 5878-5880.
- 6 H. Su, A. A. Barragan, L. Geng, D. Long, L. Ling, K. N. Bozhilov, L. Mangolini and J. Guo, *Angew. Chem. Int. Ed. Engl.*, 2017, **56**, 10780-10785.
- 7 W. Li, Z. Li, W. Kang, Y. Tang, Z. Zhang, X. Yang, H. Xue and C.-S. Lee, *J. Mater. Chem. A*, 2014, 2, 12289-12295.
- 8 X. Huang, X. Sui, H. Yang, R. Ren, Y. Wu, X. Guo and J. Chen, *J. Mater. Chem. A*, 2018, **6**, 2593-2599.
- 9 J. Shao, Y. Yang, X. Zhang, L. Shen and N. Bao, *Materials*, 2021, 14.
- 10 Y. Lu, P. Chang, L. Wang, J. Nzabahimana and X. Hu, *Funct. Mater. Lett.*, 2019, 12, 1850094.
- 11 H. Mi, X. Yang, Y. Li, P. Zhang and L. Sun, *Chem. Eng. J.*, 2018, **351**, 103-109.
- 12 H. Tao, L. Z. Fan, W. L. Song, M. Wu, X. He and X. Qu, *Nanoscale*, 2014, **6**, 3138-3142.