Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2023

Electronic Supplementary Information for New Journal of Chemistry

Design of Cu/ZnO/Al₂O₃ catalysts with rich Cu-ZnO interface for enhanced CO₂

hydrogenation to methanol using zinc-malachite as precursor

Haotian Zhang ^a, Caiyun Han ^a, Congming Li ^c, Peng Wang ^{a, b*}, Hao Huang ^d, Shuang

Wang ^{a, b, *}, Jinping Li ^b

^a College of Environmental Science and Engineering, Taiyuan University of Technology,

Jinzhong 030600, Shanxi, P.R. China.

^b Shanxi Key Laboratory of Gas Energy Efficient and Clean Utilization, Taiyuan

University of Technology, Taiyuan 030024, Shanxi, P.R. China.

^c State Key Laboratory of Clean and Efficient Coal Utilization, Taiyuan University of

Technology, Taiyuan 030024, Shanxi, China.

^d Department of Microsystems, University of South-Eastern Norway, Borre 3184,

Norway.

E-mails: wangshuang@tyut.edu.cn, wangpeng01@tyut.edu.cn

Contents

Section S1 Materials characterization

Section S2 Catalytic performance measurement

Section S3 Attached drawings and schedules

Section S1 Materials characterization

Powder X-ray Diffraction (XRD): XRD patterns were analyzed on a Bruker D8 Advance X-ray diffractometer using Cu Kα radiation (40 kV, 40 mA, λ = 0.15418 nm) with a scan rate of 8°·min⁻¹ and a 2θ range of 10-50° for precursors and 10-80° for catalysts.

Inductively Coupled Plasma Optical Emission Spectrometer (ICP-OES): Elemental content data for Cu, Zn, and Al were obtained by a PerkinElmer Avio 200 ICP-OES instrument. Samples were digested as described below. A 10 mg sample was dispersed in 10 mL of phosphoric acid and then diluted to 100 mL with deionized water prior to measurement.

Nitrogen adsorption and desorption isotherms: N₂ adsorption-desorption measurements were performed by nitrogen adsorption (-77 k) on a Micromeritics TriStar II 3020 instrument. Prior to testing, samples were vacuum dried at 200°C for 10 h. Surface areas were calculated using the Brunauer-Emmett-Teller (BET) method.

Transmission electron microscopy (TEM): TEM samples were prepared by dispersing the samples in ethanol using a sonic bath followed by drop casting onto copper grid. The TEM images and EDS mapping were performed using JEM-2100F with an accelerating voltage of 200 kV.

X-ray photoelectron spectroscopy (XPS): XPS measurements were performed on a Thermo Fisher Scientific K-Alpha spectrometer with Al Ka (1486.8 eV) as the X-ray source. The samples used for testing were CZA-1-R, CZA-2-R and CZA-3-R.

Temperature-programmed H₂ reduction (H₂-TPR): H₂-temperature programmed reduction (H₂-TPR) was carried out using Micromeritics AutoChem II 2920 chemisorption analyzer. Before the H₂-TPR test, the calcined sample of 50 mg was

heated to 150°C under Ar atmosphere (30 mL·min⁻¹) and purged for 1 h, and then cooled to 50°C. The reduction process was performed in the range of 50-400°C under 10% H_2/Ar (30 mL·min⁻¹) atmosphere.

Temperature-programmed CO₂ desorption (CO₂-TPD): CO₂-TPD were carried out using a Micromeritics AutoChem II 2920 chemisorption instrument. Before the CO₂-TPD test, the reduced sample of 50 mg was heated to 150°C under He atmosphere (30 mL·min⁻¹) and purged for 1 h. After being cooled to 50°C in a He atmosphere, the sample was purged with 10% CO₂/He mixture (30 mL·min⁻¹) for 1.5 h at 50°C to saturate the surface, then purged in flowing He (30 mL·min⁻¹) for 1.5 h to remove physically adsorbed CO₂. Subsequently, the temperature was elevated in flowing He (30 mL·min⁻¹) until up to 800°C at a ramp rate of 10°C·min⁻¹. CO₂ desorption amount was quantitatively measured based on CO₂ single-pulse experiment.

Temperature-programmed H₂ desorption (H₂-TPD): H₂-TPD were carried out using a Micromeritics AutoChem II 2920 chemisorption instrument. H₂-TPD experiment was carried out with the similar method as that employed in CO₂-TPD. Before the H₂-TPD test, the reduced sample of 50 mg was heated to 150°C under Ar atmosphere (30 mL·min⁻¹) and purged for 1 h. After being cooled to 50°C in an Ar atmosphere, the sample was purged with 10% H₂/Ar mixture (30 mL·min⁻¹) for 1.5 h at 50°C to saturate the surface, then purged in flowing Ar (30 mL·min⁻¹) for 1.5 h to remove physically adsorbed H₂. Subsequently, the temperature was elevated in flowing Ar (30 mL·min⁻¹) until up to 800°C at a ramp rate of 10°C·min⁻¹. The desorbed H₂ signal was monitored by a TCD detector, and H₂ desorption amount was quantitatively calculated by H₂ single-pulse experiment.

Cu dispersion (D_{Cu}) and metallic Cu special surface area (S_{Cu}): Assuming that the

chemisorption of H on copper atoms proceeds according to Cu:H = 2:1, the specific surface area (S_{Cu}) and dispersion D_{Cu}) of copper are calculated as follows:

$$S_{Cu} = 4 \times H_2 uptake \times N_{av} / (1.47 \times 10^{19}) (m^2/g)$$

In this equation, N av is Avogadro's constant and 1.47×10^{19} is the value of Cu atoms per square meter ¹.

$$D_{Cu} = \frac{\text{amount of Cu atoms on surface (moles)}}{\text{total amount of Cu atoms on sample (moles)}} \times 100\%$$
$$= \frac{H_2 \text{uptake} \times 4(\text{moles})}{\text{total amount of Cu atoms on sample (moles)}} \times 100\%$$

Section S2 Catalytic performance measurement

Activity measurements in the hydrogenation of CO₂ were carried out in a fixed-bed reactor. Calcined sample (CZA-C, 0.4 g, 40 - 60 mesh) diluted with 1.1 g quartz sand (40 - 60 mesh) was placed in a stainless steel tube reactor. Prior to reaction, the sample was reduced in H_2/N_2 (10/90, v/v) mixture gas at a flow-rate of 60 mL min⁻¹ under atmospheric pressure. The reduction temperature was programmed to increase from room temperature to 290°C and maintained at 290°C for 4 h. The reactor was then cooled to room temperature. After reduction, the activities of the catalyst samples in CO₂ hydrogenation process were determined under specific reaction conditions.

The exit gas from the reactor was maintained at 150°C and immediately transported to the sample valve of the GC (Agilent 8860), which was equipped with thermal conductivity (TCD) and flame ionization detectors (FIDs). TDX-01 C molecular sieve packed columns (1 m × 3 mm; Agilent) were connected to TCD, whereas HP-PLOT/Q capillary columns were connected to FID. The packed column was used for the analysis of CO₂ and CO, and the capillary column (30 m × 0.32 mm × 20 μ m; Agilent Technologies, Inc) was used for methanol (CH₃OH), methoxymethane (CH₃OCH₃), methane (CH₄) and other C-containing products. CO₂ conversion (denoted as X_{CO₂}), the CH₃OH selectivity (denoted as S_{CH₃OH}) and the yield of CH₃OH were calculated using an external normalization method, which were defined as the following Eq. 1, Eq. 2, and Eq. 3.

$$X_{CO_2}(\%) = \frac{n(CO) + n(CH_4) + n(CH_3OH)}{n(CO) + n(CH_4) + n(CH_3OH) + n(CO_2)} \times 100$$
 Eq. 1

$$S_{CH_{3}OH}(\%) = \frac{n(CH_{3}OH)}{n(CH_{3}OH) + n(CO) + n(CH_{4})} \times 100$$
 Eq. 2

$$\text{Yield}_{\text{CH}_{3}\text{OH}}(\%) = \text{X}_{\text{CO}_{2}} \times \text{S}_{\text{CH}_{3}\text{OH}} \times 100$$
Eq. 3

Section S3 Attached drawings and schedules

Photo S1. Photos of precursors and calcined samples.

Fig. S1. XRD patterns of CZA-1-P, CZA-2-P and CZA-3-P.

Fig. S2. The lattice plane reflection characteristics and zinc substitutions amount of CZA-1-P, CZA-2-P and CZA-3-P.

Fig. S3. TEM images and histograms of particle size statistical distribution of various catalysts: (a) CZA-1-R; (b) CZA-2-R; (c) CZA-3-R. (The particle size count is 150 for each image).

Fig. S4. N₂ adsorption-desorption isotherms of the CZA-1-R, CZA-2-R and CZA-3-R.

Fig. S5. HRTEM images of CZA-1-R (a-c), CZA-2-R (d-f), CZA-3-R (g-i). (Yellow lines

represent Cu-ZnO interface)

Fig. S6. HAADF-STEM images and EDS elemental mappings of Cu, Zn, Al and O for

CZA-1-R (a-c), CZA-2-R (d-f) and CZA-3-R (g-i).

Fig. S7 Relationship between CO₂ conversion and methanol selectivity in CZA-1-R, CZA-

2-R and CZA-3-R.

Fig. S8. The relationship between the concentration of oxygen vacancies relative to the methanol yield at (a) 190°C, (b) 210°C, (c) 250°C over different catalysts. Reaction conditions: 3 MPa, V_{H_2/CO_2} = 3 and WHSV = 10000 mL·g_{cat}⁻¹·h⁻¹.

Fig. S9. The relationship between CO₂ conversion and methanol selectivity in (a) CZA-1-R, (b) CZA-2-R and (c) CZA-3-R. Reaction conditions: 3 MPa, V_{H_2/CO_2} = 3 and WHSV = 10000 mL·g_{cat}⁻¹·h⁻¹.

Fig. S10. The relationship between the fraction of strongly basic sites relative to all the basic sites and methanol selectivity over the different catalysts at the 20% CO_2 conversion. Reaction conditions: 3 MPa, V_{H_2/CO_2} = 3 and WHSV = 10000 mL·g_{cat}⁻¹·h⁻¹.

Fig. S11. XRD patterns of fresh CZA-2-R and CZA-2-R after 120 h stability test.

Table S1

Catalytic performance of Cu/ZnO/Al $_2O_3$ catalysts in CO $_2$ hydrogenation to CH $_3OH$.

Catalyst	Preparation method	H ₂ /CO ₂	P (MPa)	Т (°С)	SV	X _{CO2} (%)	S _{сн_зон} (%)	Yield (%)	Ref
Cu/ZnO/Al ₂ O ₃	Co-precipitation	3	3	190		8.31	79.7	6.6	This work
				210	$10000 \text{ ml} \text{ a} -1 \text{ h}^{-1}$	14.15	64.9	9.2	
				230	10000 IIIL.g _{cat} II	20.4	54.8	11.2	
				250		23.0	45.8	10.5	
Cu/Zn/Al-HT	-	3	3	250	2600 mL·g _{cat} -1·h ⁻¹	6	73.4	4.4	2
Cu/Zn/Al/Zr	Co-precipitation	3	4	240	9742 h ⁻¹	18.7	47.2	8.8	3
Cu/Zn/Zr	Co-precipitation	3	3	200	8800 h ⁻¹	5.8	55.2	3.2	4
Cu/Zn/Al	Co-precipitation	3	3	230	-	18.7	43	8.0	5
Cu/Zn/Al- commercial catalyst	-	3	4	250	18000 h ⁻¹	11.1	54.8	6.1	6
Cu/Zn/Al-LDO	Hydrothermal	3	3	250	-	7	50	3.5	7
Cu-ZnO ^{MOF} ⊂Al ₂ O ₃	Solvothermal	3	3	240	14400 h⁻¹	9.1	86.9	7.9	8
Cu-ZnO/Al ₂ O ₃	Co-precipitation	3	3	240	14400 h ⁻¹	5.1	79.6	4.1	8
$Cu-ZnO@Al_2O_3$	Co-precipitation	3	3	250	1500 mL·g _{cat} -1·h ⁻¹	19.8	48	9.5	9
10NG-Cu/Zn/Al	Co-precipitation	3	3	200	-	8.2	84	6.8	10
Cu/Zn/Al	Ultrasonic co- precipitation	3	2	200	2000 h ⁻¹	5	66	3.3	11
$Cu/Zn/\gamma$ - Al_2O_3	Ammonia deposition- precipitation	3	4	220	1500 mL·g _{cat} ⁻¹ ·h ⁻¹	15	58.9	8.8	12
Cu/ZnO/Al ₂ O ₃	Co-precipitation	3	5	230	2500 mL·g _{cat} -1·h ⁻¹	27.5	75	20.66	This work
Cu/Zn/Al	Co-precipitation	2.8	5	170	400 mL·g _{cat} -1·h ⁻¹	14.3	54.8	7.8	13
Cu/ZnO/Al ₂ O ₃	Precipitation	2.2	4.5	280	8000 mL·g _{cat} -1·h ⁻¹	12	71.6	8.6	14
Cu/Zn/Zr	Co-precipitation	3.89	5	280	10000 h ⁻¹	21	34	7.1	15
Cu/Zn/Al/Zr	Co-precipitation	3	5	190	4000 h ⁻¹	18.9	81.1	15.3	16
Cu/Zn/Al/Zr	Co-precipitation	3	5	250	4000 h ⁻¹	25.6	61.3	15.7	17

Table S2

Catalysts _	Before stability test		After sta	ability test	Time on stream	Ref
	CO ₂ Conv. (%)	CH₃OH Sel. (%)	CO ₂ Conv. (%)	CH₃OH Sel. (%)		Ner.
CZA-2-R	20	54.5	20	54.3	120	This work
CZZ	~17.0	~45.5	~15	~45.5	100	18
CZ/Z	15.8	40.4	-	-	100	19
Cu/SiO ₂	20	23	-	-	45	20
CZS-0	14	30	11.7	30.2	41.6	21
CZZ-400	16.8	41	16.1	42	130	22
$C_5 Z_2 Z_{2.8} W_{0.2}$	19.7	49.3	~19.3	~48	100	23
CZZ-120	~18.4	~37.5	~17.3	~36	100	24
CZZ-flower	~19	~57	~18	~59	100	25

The stability of over the reported catalysts for CO_2 hydrogenation to methanol.

Reference

- 1. G. Wang, F. Luo, L. Lin and F. Zhao, React. Kinet., Mech. Catal., 2021, 132, 155-170.
- 2. X. Fang, Y. Men, F. Wu, Q. Zhao, R. Singh, P. Xiao, T. Du and P. A. Webley, *Chem. Eng. J.*, 2019, **378**, 122052.
- 3. X. An, J. Li, Y. Zuo, Q. Zhang, D. Wang and J. Wang, *Catal. Lett.*, 2007, **118**, 264-269.
- 4. F. Arena, K. Barbera, G. Italiano, G. Bonura, L. Spadaro and F. Frusteri, J. Catal., 2007, 249, 185-194.
- 5. C. Li, X. Yuan and K. Fujimoto, Appl. Catal. A Gen., 2014, 469, 306-311.
- 6. B. An, J. Zhang, K. Cheng, P. Ji, C. Wang and W. Lin, J. Am. Chem. Soc., 2017, 139, 3834-3840.
- 7. F. Zhao, L. Fan, K. Xu, D. Hua, G. Zhan and S. Zhou, J. CO₂ Util., 2019, **33**, 222-232.
- 8. T. Qi, Y. Zhao, S. Chen, W. Li, X. Guo, Y. Zhang and C. Song, *Mol. Catal.*, 2021, **514**.
- 9. T. T. N. Hoang, Y.-S. Lin, T. N. H. Le, T. K. Le, T. K. X. Huynh and D. Tsai, Adv. Powder Technol., 2021, **32**, 1785-1792.
- 10. Q. Ma, M. Geng, J. Zhang, X. Zhang and T. Zhao, *ChemistrySelect*, 2019, **4**, 78-83.
- 11. V. D. B. C. Dasireddy and B. Likozar, Renew. Energy, 2019, 140, 452-460.
- 12. C. Zhang, H. Yang, P. Gao, H. Zhu, L. Zhong, H. Wang, W. Wei and Y. Sun, J. CO₂ Util., 2017, **17**, 263-272.
- 13. Y. Liu, Y. Zhang, T. Wang and N. Tsubaki, *Chem. Lett.*, 2007, **36**, 1182-1183.
- 14. F. Liao, Y. Huang, J. Ge, W. Zheng, K. Tedsree, P. Collier, X. Hong and S. C. Tsang, Angew Chem Int Ed Engl, 2011, 50, 2162-2165.
- 15. L. Angelo, M. Girleanu, O. Ersen, C. Serra, K. Parkhomenko and A.-C. Roger, Catal. Today, 2016, 270, 59-67.
- 16. S. Xiao, Y. Zhang, P. Gao, L. Zhong, X. Li, Z. Zhang, H. Wang, W. Wei and Y. Sun, Catal. Today, 2017, 281, 327-336.
- 17. P. Gao, R. Xie, H. Wang, L. Zhong, L. Xia, Z. Zhang, W. Wei and Y. Sun, J. CO₂ Util., 2015, **11**, 41-48.
- 18. Y. Liang, D. Mao, X. Guo, J. Yu, G. Wu and Z. Ma, J. Taiwan Inst. Chem. Eng., 2021, **121**, 81-91.
- 19. J. Yu, G. Chen, Q. Guo, X. Guo, P. Da Costa and D. Mao, Fuel, 2022, 324.
- 20. Z. Yan, Y. Wang, X. Wang, C. Xu, W. Zhang, H. Ban and C. Li, Catal. Lett., 2022, DOI: 10.1007/s10562-022-04047-7.
- 21. Y. Wang, X. Wang, Z. Yan, C. Xu, W. Zhang, H. Ban and C. Li, J. Catal., 2022, 412, 10-20.
- 22. D. Chen, D. Mao, G. Wang, X. Guo and J. Yu, J. Sol-Gel Sci. Technol., 2019, 89, 686-699.
- 23. G. Wang, D. Mao, X. Guo and J. Yu, Appl. Surf. Sci., 2018, 456, 403-409.
- 24. C. Huang, D. Mao, X. Guo and J. Yu, *Energy Technol.*, 2017, **5**, 2100-2107.
- 25. H. Chen, H. Cui, Y. Lv, P. Liu, F. Hao, W. Xiong and H. a. Luo, *Fuel*, 2022, **314**, 123035.