Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2023

SUPPORTING INFORMATION

SO_3H -group anchored Covalent Organic Frame work for the synthesis of hydroxyl-carbamate in a single step utilizing CO_2

Titu Mondal,^a Jhumur Seth,^a Somnath Sarkar^a and Sk Manirul Islam*^a

^aDepartment of Chemistry, University of Kalyani, Kalyani, Nadia 741235, West Bengal, India

Serial Number	Content	Pages
1.	Materials and reagent	2
2.	Instruments specification	2
3.	Synthesis of TpPa-SO ₃ H	2
4.	Synthesis procedure of hydroxyl-carbamates	2
5.	FTIR Spectrum of reused catalyst	3
6.	¹ H NMR and ¹³ C NMR data of 2-hydroxy-3-isopropoxypropyl phenylcarbamate	4-5
7.	¹ H NMR data and spectra of 2-hydroxypropyl phenylcarbamate	6
8.	¹ H NMR data and ¹³ C NMR data of 2-hydroxycycloheptyl phenylcarbamate	7-8
9.	¹ H NMR data and ¹³ C NMR data of 2-hydroxy-3- isopropoxxypropyl benzylcarbamate	9-10
10.	¹ H NMR data and spectra of 3-chloro-2-hydroxypropyl benzylcarbamate	11
11.	¹ H NMR data and spectra of 2-hydroxypropyl benzylcarbamate	12
12.	¹ H NMR data and ¹³ C NMR data of 2-hydroxy-3- isopropoxypropyl diethylcarbamate	13-14
13.	¹ H NMR data and ¹³ C NMR data of 2-hydroxy-3- isopropoxypropyl dibutylcarbamate	15-16
14.	Reference	16

Materials

All chemicals were purchased from commercially available sources and used as received without further purification. Solvents were distilled and dried through standard methods before use.

Characterization Techniques

Fourier-transform infrared spectroscopy was carried out on a Perkin-Elmer FTIR 783 spectrophotometer using KBr pellets. Bruker D8 Advance X-ray diffractometer using Cu-K_aradiation ($\lambda = 1.5418$ Å) operating at 40 kV and 40 mA was utilized to record powder X-ray diffraction (PXRD) data of samples. Bruker AMX- 400 instrument was operates for ¹H NMR spectra. Transmission Electron Microscope (TEM) [JEOL JEM 2100] was used obtain the morphological information of the sample. The N₂ adsorption-desorption analysis of catalyst sample was conducted by using a BET Surface Analyzer [QUANTACHROME ASIQCOV602-5]. X-ray photoelectron spectroscopy was executed by using an Omicron Nanotechnology GmbH XPS machine.

Experimental Section:

Synthesis of TpPa-SO₃H:

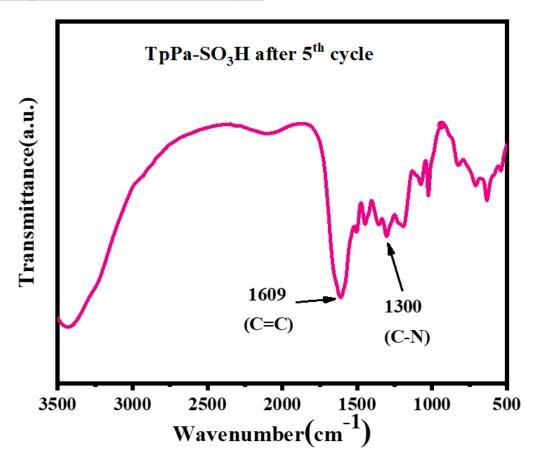
The TpPa-SO₃H COF was synthesized by condensation reaction, under solvothermal condition, between 1,3,5-triformylphloroglucinol (Tp)and 2,5diaminobenzenesulfonic acid (Pa-SO₃H). A 3mL mixture of solution was made by 1,4-dioxane and mesitylene were taken in 1:4 ratio in a round bottom flask, followed by the addition of 1,3,5-triformylphloroglucinol (Tp) (0.3 mmol, 63 mg) and 2,5diaminobenzenesulfonic acid (Pa-SO₃H) (0.45mmol, 84.6mg). After degassing the whole mixture for 30 min, it was stirred at 120 °C for 3 days in an inert atmosphere (using N₂ gas atmosphere). A red coloured solid was obtained which was collected by filtration and washed with ethanol and tetrahydrofuran for three times, respectively. The obtained red crystallite product was dried at 100 °C for another 24 h to get the as mentioned TpPa-SO₃H (66.7 mg). The amount of yield obtained is 82%.

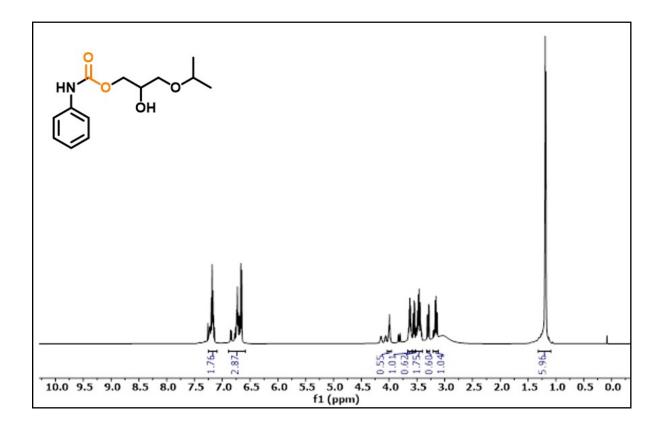
General Procedure of catalytic synthesis of hydroxyl-carbamate:

In this reaction, epoxide and amine have been taken in a fixed ratio into a round bottom flask. Then, 30 mg of TpPa-SO₃H has been taken as a catalyst and 10 mL chloroform as solvent. The whole mixture has been degassed. Now, the reaction mixture has been refluxed under nitrogen atmosphere at 80 $^{\circ}$ C for 8 h.

After completion of the reaction, it has been extracted with ethyl acetate and washed for several times. Finally, a N.M.R. spectrum has been done with the obtained product to confirm its structure.

FTIR Spectrum of reused catalyst:




Figure S1. FTIR Spectrum of reused catalyst.

NMR data of N-methylated products

2-hydroxy-3-isopropoxypropyl phenylcarbamate:

(Hydroxyl carbamate formed from Table 5, entry 1)

¹H-NMR data:

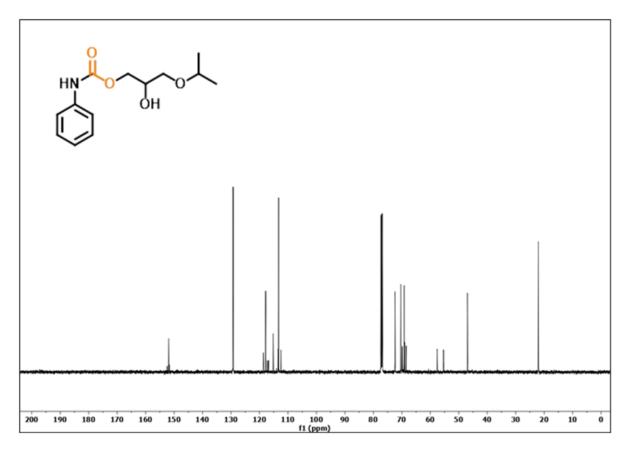
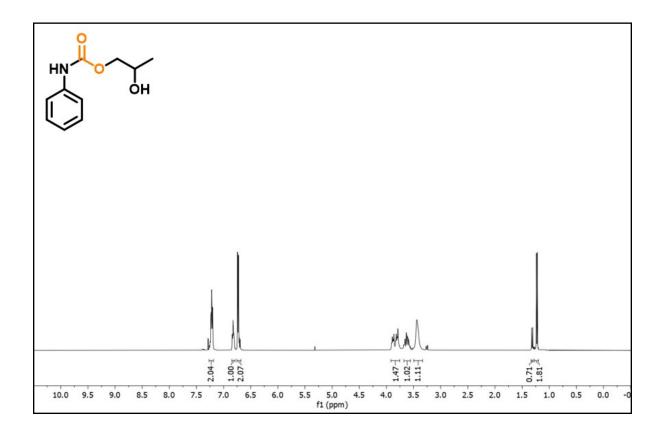


Figure S2.¹H-NMR data of 2-hydroxy-3-isopropoxypropyl phenylcarbamate.

¹H NMR (400 MHz, CDCl₃): δ 7.25 – 7.09 (m, 2H), 6.89 – 6.58 (m, 3H), 4.02 – 3.97 (m, 1H), 3.67 – 3.59 (m, 1H), 3.55 (dd, J = 9.4, 3.9 Hz, 1H), 3.47 (dt, J = 9.5, 6.9 Hz, 2H), 3.30 (dd, J = 12.6, 4.3 Hz, 1H), 3.15 (dd, J = 12.8, 7.1 Hz, 1H), 1.19 (dt, J = 6.0, 1.8 Hz, 6H).

(Hydroxyl carbamate formed from Table 5, entry 1)

¹³C NMR spectra:


Figure S3.¹³C-NMR data of 2-hydroxy-3-isopropoxypropyl phenylcarbamate.

¹³C NMR (100 MHz, CDCl₃): δ 152.25, 129.27, 117.83, 115.20, 113.30, 72.39, 70.36, 69.19, 57.61, 55.35, 46.95, 22.07.

<u>2-hydroxypropyl phenylcarbamate¹</u>:

(Hydroxyl carbamate formed from Table 5, entry 2)

¹H-NMR data:

Figure S4.¹H-NMR data of 2-hydroxypropyl phenylcarbamate.

¹**H NMR (400 MHz, CDCl₃):** δ 7.27 – 7.19 (m, 2H), 6.82 (m, *J* = 7.0, 1H), 6.76 – 6.68 (m, 2H), 3.91-3.75 (m, 2H), 3.70-3.55 (m, 1H), 3.40 (brs, 1H), 1.31 – 1.20 (d, 3H).

<u>2-hydroxycycloheptyl phenylcarbamate:</u>

(Hydroxyl carbamate formed from Table 5, entry 3)

¹H-NMR data:

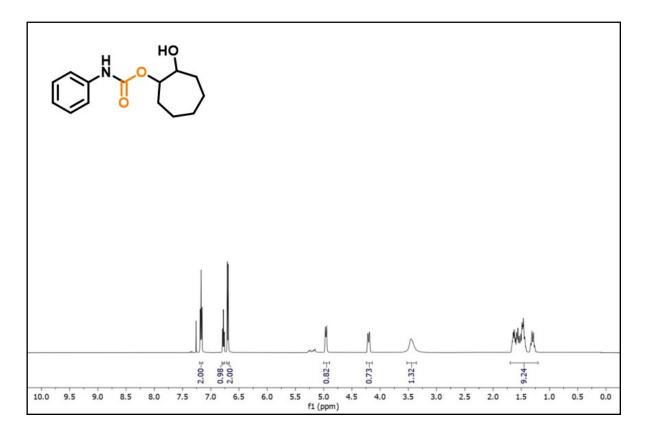
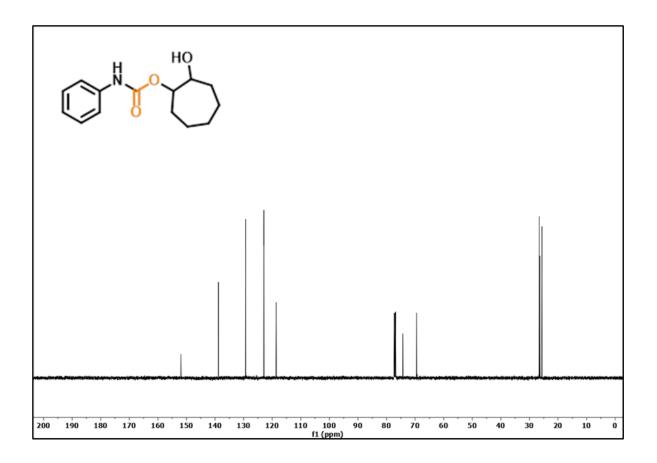



Figure S5.¹H-NMR data of 2-hydroxycycloheptyl phenylcarbamate.

¹**H NMR (400 MHz, CDCl₃):** δ 7.17 (ddt, *J* = 8.6, 6.7, 1.4 Hz, 2H), 6.78 (td, *J* = 7.3, 1.2 Hz, 1H), 6.72 – 6.67 (m, 2H), 4.98-4.94 (d, 1H), 4.22-4.18 (m, 1H), 3.44 (s, 1H), 1.43 – 1.20 (m, 10H).

(Hydroxyl carbamate formed from Table 5, entry 3)

¹³C NMR spectra:

Figure S6.¹³C-NMR data of 2-hydroxycycloheptyl phenylcarbamate.

¹³C NMR (100 MHz, CDCl₃): δ 151.79, 139.35, 129.32, 123.11, 118.62, 72.35, 69.83, 26.59, 26.32, 25.62.

2-hydroxy-3-isopropoxypropyl benzylcarbamate:

(Hydroxyl carbamate formed from Table 5, entry 4)

¹H-NMR data:

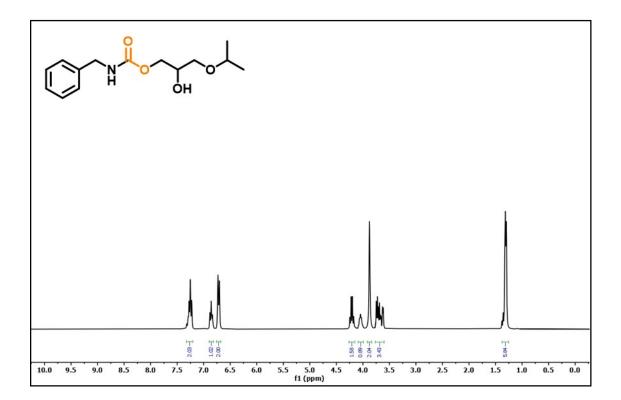
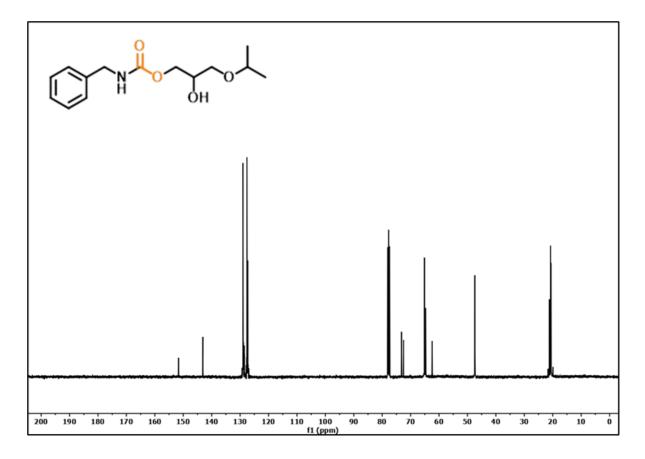



Figure S7.¹H-NMR data of 2-hydroxy-3-isopropoxypropyl benzylcarbamate.

¹**H NMR (400 MHz, CDCl₃):** δ 7.25 (m, 2H), 6.85(m, 1H), 6.70(m, 2H), 4.20 (m, 2H), 4.05 (m, 1H), 3.83(s, 2H), 3.75-3.57(m, 3H) 1.40 – 1.25(m, 6H).

(Hydroxyl carbamate formed from Table 5, entry 4)

¹³C NMR spectra:

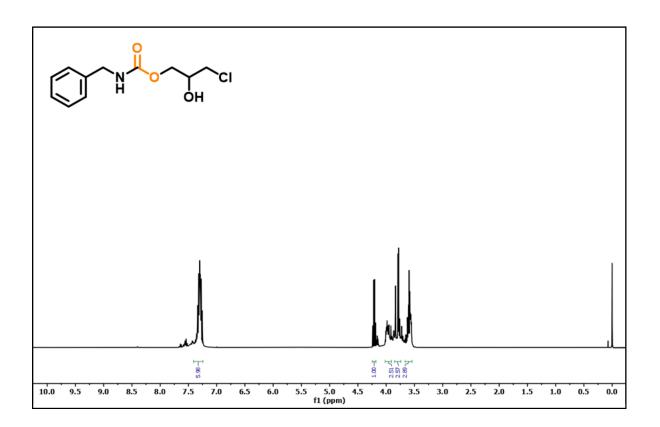


Figure S8.¹³C-NMR data of 2-hydroxy-3-isopropoxypropyl benzylcarbamate.

¹³C NMR (100 MHz, CDCl₃): δ 152.18, 143.11, 128.55, 127.12, 126.80, 73.20, 72.50, 65.12, 63.16, 47.12, 20.85.

<u>3-chloro-2-hydroxypropyl benzylcarbamate²:</u>

(Hydroxyl carbamate formed from Table 5, entry 5) ¹H-NMR data:

Figure S9.¹H-NMR data of 3-chloro-2-hydroxypropyl benzylcarbamate.

¹**H NMR (400 MHz, CDCl₃):** δ 7.49 – 7.18 (m, 5H), 4.22 – 4.15 (m, 1H), 3.94 – 3.85 (m, 2H), 3.78 – 3.75 (m, 2H), 3.56 (m, 2H).

2-hydroxypropyl benzylcarbamate²:

(Hydroxyl carbamate formed from Table 5, entry 6)

¹H-NMR data:

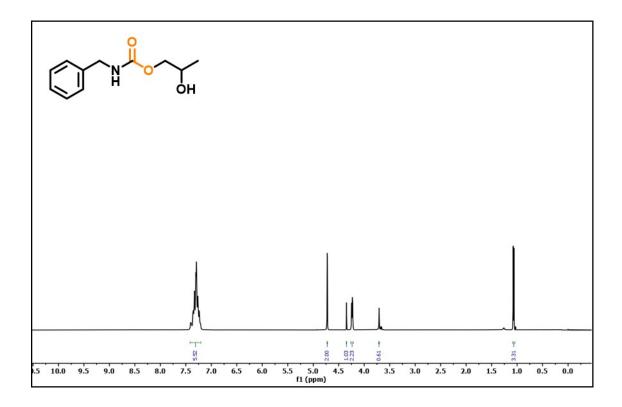


Figure S10.¹H-NMR data of 2-hydroxypropyl benzylcarbamate.

¹**H NMR (400 MHz, CDCl₃):** 7.45 – 7.15 (m, 5H), 4.73 (d, *J* = 1.5 Hz, 2H), 4.32-4.29 (m, 1H), 4.27-4.22(m, 2H), 3.71 (s, 1H), 1.06 (d, *J* = 6.2 Hz, 3H).

2-hydroxy-3-isopropoxypropyl diethylcarbamate:

(Hydroxyl carbamate formed from Table 5, entry 7)

¹H-NMR data:

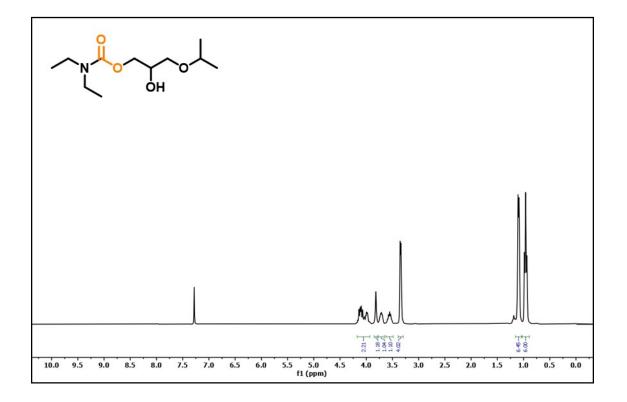
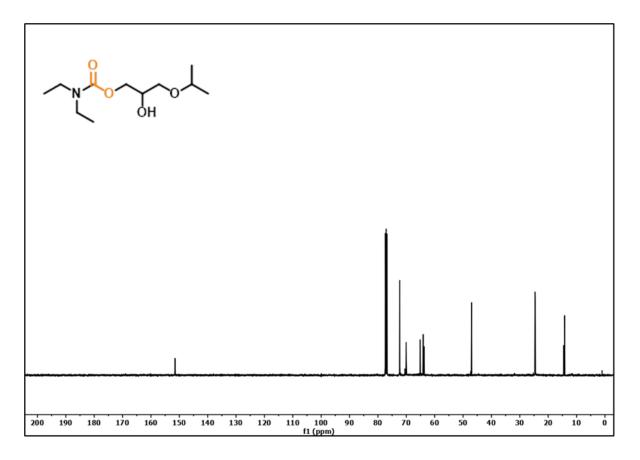


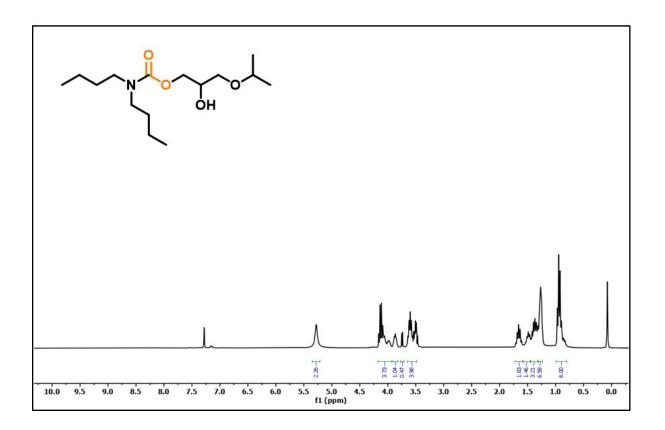
Figure S11.¹H-NMR data of 2-hydroxy-3-isopropoxypropyl diethylcarbamate.

¹**H NMR (400 MHz, CDCl₃):** δ 4.17 – 3.89(m, 2H), 3.80 (m, 2H), 3.72 (m, 1H), 3.56 (m, 1H), 3.32 (m, 4H), 1.15 – 1.04 (m, 6H), 0.96 (m, 6H).

(Hydroxyl carbamate formed from Table 5, entry 7)

¹³C NMR spectra:




Figure S12.¹³C-NMR data of 2-hydroxy-3-isopropoxypropyl diethylcarbamate.

¹³C NMR (100 MHz, CDCl3): δ 151.81, 72.32, 70.04, 65.04, 63.88, 47.02, 24.62, 14.11.

2-hydroxy-3-isopropoxypropyl dibutylcarbamate:

(Hydroxyl carbamate formed from Table 5, entry 8)

1H-NMR data:

Figure S13.¹H-NMR data of 2-hydroxy-3-isopropoxypropyl dibutylcarbamate.

¹**H NMR (400 MHz, CDCl₃):** δ 5.26 (s, 1H), 4.15 – 3.91 (m, 4H), 3.85 (m, 1H), 3.75 (m, 1H), 3.60 – 3.47 (m, 4H), 1.70 – 1.40 (m, 4H), 1.42 – 1.24 (m, 10H), 1.00 – 0.80 (m, 6H).

(Hydroxyl carbamate formed from Table 5, entry 8)

¹³C NMR spectra:

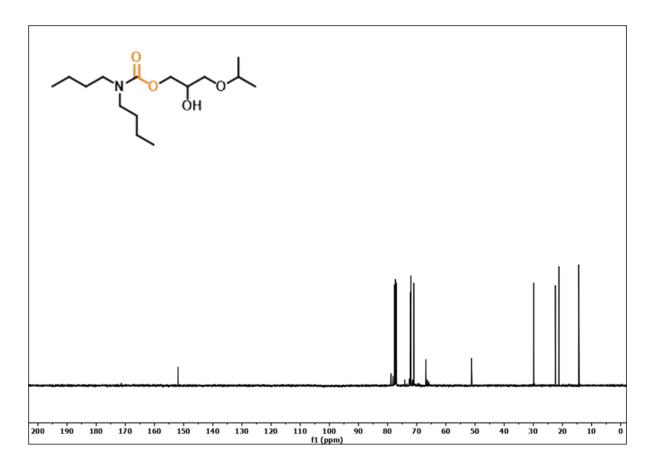


Figure S14.¹³C-NMR data of 2-hydroxy-3-isopropoxypropyl dibutylcarbamate.

¹³C NMR (100 MHz, CDCl₃): δ 152.47, 72.09, 71.02, 70.41, 66.85, 51.22, 29.92, 22.76, 21.18, 14.35.

Reference:

- (S1) Guo, W.; Gónzalez-Fabra, J.; Bandeira, N. A.; Bo, C.; Kleij, A. W. A metal-free synthesis of N-aryl carbamates under ambient conditions. *Angewandte Chemie* **2015**,*127* (40), 11852.
- (S2) Shang, J.; Guo, X.; Li, Z.; Deng, Y. CO₂ activation and fixation: highly efficient syntheses of hydroxy carbamates over Au/Fe₂O₃. *Green Chemistry* **2016**,*18* (10), 3082.