Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2023

In-situ Electrochemical Metal (Co, Ni) Oxide Deposition on MoS2 Nanosheets for

Highly Efficient Electrocatalytic Water Splitting

Yueyao Zhong^{*a}, Shouzhi Wang^b, Lei zhang^b

a School of Materials Science and Engineering, Shandong Jianzhu University, Jinan,

250100, P. R. China

E-mail: zhongyueyao123@163.com

b Institute of Novel Semiconductors, State Key Lab of Crystal Materials, Shandong

University, Jinan, 250100, P. R. China

Fig. S1 Preparation devices of Co/MoS $_2$ /CC and Ni/MoS $_2$ /CC.

Fig. S2 The SEM images of MoS₂/CC with different magnifications.

Fig. S3 TEM images of (a) CoO/MoS₂/CC, (b) NiO/MoS₂/C.

Fig. S4 XPS survey spectra of (a) CoO/MoS₂/CC and (b) NiO/MoS₂/CC.

Table S1 Comparison of the electrocatalytic performance of $CoO/MoS_2/CC$ for HER with that of reported bifunctional MoS_2 -based electrocatalysts tested under similar conditions.

	Overpotential for -10 mA	Overpotential for -100 mA	Tafel slope (mV dec ⁻¹)	Ref.
	cm ⁻² (mV)	cm ⁻² (mV)		
CoO/MoS ₂ /CC	93	162	57.9	This work
NiCo-MoS ₂	70	~	38.1	[1]
C03O4@M0O2/CC	90	220	59.5	[2]
MoS ₂ /FNS/FeNi	122	300	45.1	[3]
foam				
MoS2@NiOOH@C-	250	~	96	[4]
MC				
NiN@2M-MoS ₂	~	97	43.2	[5]

Fig. S5 Polarization curves of CoO/MoS₂/CC and commercial 20 wt% Pt/C.

Fig. S6 SEM image of CoO/MoS₂/CC after HER stability test carry out for 14 h.

Fig. S7 XRD patterns of CoO/MoS₂/CC before and after HER stability test carry out for 14 h.

Table S2 Comparison of the electrocatalytic performance of $CoO/MoS_2/CC$ for OER with that of reported bifunctional MoS_2 -based electrocatalysts tested under similar conditions.

Samples	Overpotential for 10 mA	Overpotential for 50 mA cm ⁻²	Tafel slope (mV dec ⁻¹)	Ref.
	cm ⁻² (mV)	(mV)		
CoO/MoS ₂ /CC8	210	450	282	This work
NiCo-MoS ₂	235	330	45.7	[1]
C03O4@M0O2/CC	269	~	58	[2]
MoS ₂ /FNS/FeNi	204	210	28.6	[3]
foam				
MoS2@NiOOH@C-	280	~	113	[4]
MC				
NiN@2M-MoS ₂	~	207	38.9	[5]

Fig. S8 Polarization curves of CoO/MoS₂/CC and commercial RuO₂.

Fig. S9 SEM image of CoO/MoS₂/CC after OER stability test carry out for 14 h.

Fig.S10 XRD patterns of CoO/MoS₂/CC before and after OER stability test carry out for 14 h.

Table S3 Comparison of the electrocatalytic performance of CoO/MoS₂/CC for twoelectrode overall water splitting with that of reported bifunctional MoS₂-based elecrocatalysts tested under similar conditions.

Samples	V10 (V)	V ₂₀ (V)	Durability test made	Ref.	
CoO/MoS ₂ /CC	1.65	1.75	$12 h @ 10 mA cm^{-2}$	This work	
			(1.65 V)		
NiCo-MoS ₂	1 49	1 50	$24 h @ 10 mA cm^{-2}$	[1]	
	1.40	1.38	(1.49 V)	[1]	
C03O4@M0O2/CC	1.59	1.64	$12 h @ 10 mA cm^{-2}$	[2]	
		1.04	(1.65 V)		
MoS ₂ /FNS/FeNi	1.62	1.76	$40 h @ 10 mA cm^{-2}$	[3]	
foam			(1.62V)		
NiN@2M-MoS ₂	1.58	1.59	300 h @ 1000 mA cm ⁻	[5]	
			² (1.65V)		

Fig. S11 Faradic current efficiency for HER and OER of CoO/MoS₂/CC electrode measured at 10 mA cm⁻² using conventional water displacement. The active electrode area of the cathode and anode was 1.5 cm².

Fig. S12 SEM image of CoO/MoS₂/CC after 14 h chronopotentiometric curve test in a two-electrode configuration.

Fig. S13 XRD patterns of CoO/MoS₂/CC before and after 14 h chronopotentiometric curve test in a two-electrode configuration.

References:

[1]. H. Li, S. Chen, X. Jia, B. Xu, H. Lin1 H. Yang, L. Song, X. Wang, Amorphous nickel-cobalt complexes hybridized with 1T-phase molybdenum disulfide via hydrazine-induced phase transformation for water splitting, *Nat. Commun.* 2017, **8**, 15377.

[2]. J. Liu, J. Wang, B. Zhang, Y. Ruan, H. Wan, X. Ji, K. Xu, D. Zha, L. Miao, J. Jiang, Mutually beneficial Co₃O₄@MoS₂ heterostructures as a highly efficient bifunctional catalyst for electrochemical overall water splitting, *J. Mater. Chem. A* 2018, **6**, 2067.

[3]. Y.Wu, F. Li, W. Chen, Q. Xiang, Y. Ma, H. Zhu, P. Tao, C. Song, W. Shang, T. Deng, J. Wu, Coupling Interface Constructions of MoS₂/Fe₅Ni₄S₈ Heterostructures for Efficient Electrochemical Water Splitting, *Adv. Mater.* 2018, **30**, 1803151.

[4]. J. Liu, S. Zhao, C. Wang, Y. Ma, L. He, B. Liu, Z. Zhang, Catkin-derived mesoporous carbonsupported molybdenum disulfide and nickel hydroxyl oxide hybrid as a bifunctional electrocatalyst for driving overall water splitting, journal of colloid and interface science carbon support MoS2 and NiOH bifunctional electrocatalyst, *J. Colloid Interf. Sci.* 2022, **608**, 1627.

[5]. T. Wu, E. Song, S. Zhang, M. Luo, C. Zhao, W. Zhao, Ji. Liu, F. Huang, Engineering Metallic Heterostructure Based on Ni₃N and 2M-MoS₂ for Alkaline Water Electrolysis with Industry-Compatible Current Density and Stability, *Adv. Mater.* 2022, **34**, 2108505.