Electronic Supplementary Information

One-pot Synthesis of Pyridinium-based Ionic Porous Organic Polymers for Efficient CO₂ Catalytic Conversion

Ting Li, ^{ab} Minghui Chen, ^{ab} Quan Shi, ^{ab} Ji Xiong, ^{ab} Yaqing Feng, ^{ab} and Bao Zhang*,^{ab}

a. School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, China. Email: <u>baozhang@tju.edu.cn</u>

b. Guangdong Laboratory of Chemistry and Fine Chemical Industry Jieyang Center, Guangdong Province, 522000, P. R. China.

Content

Section 1. Experimental and characterization details1
Section 2. PXRD of TE-POPs
Section 3. Zeta potential of TE-POPs
Section 4. TGA of TE-POPs7
Section 5. Chemical stability test of TE-POPs7
Section 6. EDS of TE-POPs
Section 7. Summary of studies on CO ₂ adsorption
Section 8. Structure and morphological characterization after cycloaddition9
Section 9. XPS of TE-POPs after cycloaddition11
Section 10. Summary of studies on CO ₂ cycloaddition11

Section 1. Experimental and characterization details

1.1 Reagents and materials

All chemicals and solvents, unless otherwise mentioned, are commercially available and used without further purification. All chemicals and reagents were used as received from commercial sources without further purification. Epichlorohydrin, butylene oxide, 1,2-epoxystyrene, glycidyl phenyl ether, mesitylene, N, Ndimethylformamide (DMF), *n*-BuOH (N-butanol), o-dichlorobenzene (o-DCB), Methanol (MeOH), dimethylamine were purchased from Aladdin industrial corporation, Shanghai, China. Dichloromethane, acetone, hydrochloric acid, sodium hydroxide, saturated sodium bicarbonate, anhydrous sodium sulfate, petroleum ether, ethanol, were purchased from Jiangtian chemical technology limited company, Tianjin, China.

1.2 Characterization techniques

Liquid ¹H NMR spectra of all monomers were recorded on a Bruker AVANCE IIITM HD 400 MHz NanoBAY. The 600MHz solid ¹³C NMR spectra was obtained on Japan Electronics JEOL JNM ECZ600R. Powder X ray diffraction (PXRD) data were collected on Netherlands the Panalytical X'Pert Pro using Cu Kα radiation at 40 kV, 40 mA power, the scanning angle is from 3-30° and the scanning speed is 0.1°/s. Fourier-transform infrared (FTIR) spectra was measured on a Nicolet 6700 instrument (400-3500 cm⁻¹ region). Photoelectron spectrum datas were measured on an X-ray photoelectron spectrometer of Thermo Fisher ESCALAB-250Xi. Thermogravimetric analysis (TGA) was measured on Netzsch TG 209F3 with heat rate of 10°C in nitrogen atmosphere and the temperature measurement range is 30-800°C. The Brunauer-Emmett-Teller (BET) surface areas was measured by nitrogen adsorption and desorption at 77 K using Autosorb-iQ2-MP and the samples were activated at 120 °C for 12 h under vacuum before analysis, the degassing temperature is 120°C and the degassing time is 6h. Field Emission Scanning Electron Microscopy (SEM) and energy dispersive spectroscopy (EDS) were measured on Hitachi S-4800, in order to avoid the influence of the C element on the carbon film, the sample was sonicated in petroleum ether and dropped onto the aluminum foil paper for EDS scanning. Transmission electron microscope (TEM) was measured on Japan Electronics JEM-2100F and JEM-F200.

1.3 Synthesis of N-ethyl-2,4,6-trimethylpyridinium bromide (ETMP-Br)

The synthetic route of ETMP-Br referred to the literature¹. Bromoethane (6.02 mL, 80.0 mmol) was added dropwise to a solution of 2,4,6-trimethylpyridine (5 mL, 40.0 mmol) in acetonitrile (50 mL) at room temperature, which was also protected from light. After stirring at 100°C for 36 h, the solvent was evaporated to give a white solid, which was recrystallized in ethyl acetate to give 1.95 g product as white crystal with yield of 21.7 %. ¹H NMR (400 MHz CDCl₃): δ 1.55 (t, 3H), 2.56 (s, 3H), 2.98 (s, 6H), 4.78 (q, 2H), 7.60 (s, 2H).

Fig. S1. The ¹H NMR spectrum of ETMP-Br.

1.4 Synthesis of Tris(4-formylphenyl)-amine (TFPA)

The synthetic route of TFPA referred to the literature². Triarylamine (4.8 g, 0.02 mol) was dissolved in 16 mL DMF (16 mL). POCl₃ (20.0 mL, 100.0 mmol) was added dropwise to the mixture at 0°C. After mixing, the temperature was raised to room temperature, during which the color of the solution turned red. The reaction mixture was then heated to 60° C and stirred for an additional 24 h. The product mixture was poured into an ice-bath and neutralized with sodium hydroxide. After filtration, the residue was dried in a vacuum desiccator, and then purified by column

chromatography. The product is yellow solid with yield of 14.9%. ¹H NMR (400 MHz CDCl₃): δ 9.95 (s, 3H), 7.84 (d, 6H), 7.27 (d, 6H).

Fig. S2. The ¹H NMR spectrum of TFPA.

1.5 Exploration of synthesis conditions of TE-POPs

Control variable	Entry	Solvent systems /mL	Temprature /°C	Results	Yield/%
Solvent systems	1	DMF:o-DCB 2M Dimethylamine=1:1:0.2	120	Amorphous polymer	67
	2	DMF: <i>n</i> -BuOH 2M Dimethylamine=1:1:0.2	120	Amorphous polymer	78
	3	o-DCB: <i>n</i> -BuOH 2M Dimethylamine=1:1:0.2	120	Amorphous polymer	80
	4	<i>n</i> -BuOH:Mesitylene: 120 2M Dimethylamine=1:1:0.2		Amorphous polymer	64
	5	1,4-Dioxane:o-DCB: 2M Dimethylamine=1:1:0.2	1,4-Dioxane:o-DCB:A1Dimethylamine=1:1:0.2		70
	6	1,4-Dioxane: <i>n</i> -BuOH: 2M Dimethylamine=1:1:0.2	120	Amorphous polymer	68
The amount of catalyst	7	o-DCB: <i>n</i> -BuOH 2M Dimethylamine=1:1:0.1	120	Amorphous polymer	82
	8	o-DCB: <i>n</i> -BuOH 2M Dimethylamine=1:1:0.3	120	Amorphous polymer	74
Temprature	9	o-DCB: <i>n</i> -BuOH 2M Dimethylamine=1:1:0.1	150	Amorphous polymer	80
	10	o-DCB: <i>n</i> -BuOH 2M Dimethylamine=1:1:0.1	180	Amorphous polymer	62
Different catalyst	11	o-DCB: <i>n</i> -BuOH 2M NaOH=1:1:0.1	120	Unreacted	-
	12	o-DCB: <i>n</i> -BuOH 2M DBU=1:1:0.1	120	Unreacted	-

Table S1. Exploring the synthesis conditions of TE-POPs.

The results obtained in Table S1 suggested that no crystalline materials could be obtained from the reaction. There were two reasons that might lead to this result. 1) the planarity of triarylamines was relatively poor; 2) this reaction was irreversible.

Section 2. PXRD of TE-POPs

Fig. S3. PXRD spectrum of TE-POPs.

Section 3. Zeta potential of TE-POPs

Fig. S4. Zeta potential of TE-POPs.

Section 4. TGA curve of TE-POPs.

Fig. S5. The thermogravimetric analysis (TGA) curve of TE-POPs.

Section 5. Chemical stability test of TE-POPs.

Fig. S6. Chemical stability test of TE-POPs.

Section 6. EDS of TE-POPs

of C, N, Br.

Section 7. Summary of studies of CO₂ adsorption

Entry	Catalyst	CO ₂ uptake	Ref.
1	AMIMBr@H ₂ P-DHPhCOF	31.9	3
2	Py-iPOP-1	18.37	4
3	ZPOF-450-30	56	5
4	PEAMC1	19.04	6
5	TE-POPs	32.32	this work

Table S2. Comparison with the previous catalytic systems.

Section 8. Structure and morphological characterization after catalysis

Cycle	Temprature/°C	Residual Weight/mg	Time/h	Yield
1	90	20.0	20	96
2	90	19.9	20	96
3	90	19.8	20	94
4	90	19.8	20	96
6	90	19.6	20	93

Table S3. Recycling performance of TE-POPs.

Fig. S8. PXRD spectrum before and after after cycloaddition of TE-POPs.

Fig. S9. (a, b) SEM images of TE-POPs after cycloaddition.

Fig. S10. (a, b) TEM images of TE-POPs after cycloaddition.

Fig. S11. EDS images after cycloaddition of TE-POPs. Red, green, purple respectively represent

the elements of C, N, Br.

Section 9. XPS of TE-POPs after cycloaddition

Fig. S12. The (a) N 1s XPS spectrum and (b) Br 3d XPS spectrum of TE-POPs after cycloaddition.

Section 10. Summary of studies on CO₂ cycloaddition

The results obtained from this work were compared to some other reported heterogeneous catalysts such as porous organic polymers (POPs),^{4,5,7-11} covalent organic frameworks (COFs),^{3,12,13} metal organic frameworks (MOFs)^{14,15} and covalent triazine frameworks (CTFs)^{16,17} for the same reaction (Table S4). According to the data listed in Table S4, it was noted that this reaction could be carried out under relatively mild conditions and without the presence of any additives. Therefore, we could reach the conclusion that the TE-POPs could be regarded as a type of potential catalyst for CO₂ chemical fixation.

Entry	Catalyst	Loading	Cocatalyst	t/h	T/°C	P _{CO2} /MPa	Yield/%	Ref
1	Py-iPOP-1	40 mg		72	40	0.1	80	4
2	ZPOF-450-30	3.5	TBAI	2	70	2.0	99	5
		mmol%						
3	ZnTPP/QA-azo-	0.25		12	80	1.0	99	7
	PiP1	mol%						
4	ImTPOF-400-15	3.5	TBAB	5	90	2.0	99	8
		mmol%						
5	CorPOP-1(Mn)	10.8 mg	TBAB	12	40	1 bar	97	9
6	Py-HCP-Br	400 mg		8	120	2	99	10
7	PIMBr-COOH	1 mol%		4	100	1	94	11
8	COF1/ZnBr ₂	0.1 mol%	TBAB	12	80	0.1	99	12
		(Zn)						
9	AMIMBr@H ₂ P-	50 mg		24	120	1.0	91	3
	DHPhCOF							
10	Zn/TPA-TCIF(BD)	50 mg	TBAB	10	40	0.5	99	13
11	PIL-COOH@MIL-	200 mg		2.5	70	1.0	93	14
	101							
12	$Zn_9O_2(OH)_2(pyz)_{12}$	0.5 mol%	TBAB	24	80	7 bar	96	15
13	CTF-0-400-40-1	100 mg		4	130	0.69	99	16
14	CTF-1-HSA	6 mol%	TBAB	4	130	0.7	96	17
15	TE-POPs	20 mg		20	90	1 bar	96	this
								work

Table S4. Comparison with various catalysts in the performance of the coupling of epichlorohydrin and CO_2 .

References

 F. Meng, S. Bi, Z. Sun, B. Jiang, D. Wu, J. S. Chen and F. Zhang, *Angew. Chem., Int. Ed.*, 2021, 60, 13614-13620.

[2] J. Lin, S. Bi, Z. Fan, Z. Fu, Z. Meng, Z. Hou and F. Zhang, Polym. Chem., 2021, 12, 1661-1667.

[3] Y. Zhang, H. Hu, J. Ju, Q. Yan, V. Arumugam, X. Jing, H. Cai and Y. Gao, *Chin. J. Catal.*, 2020, 41, 485-493.

[4] K. Liu, Z. Xu, H. Huang, Y. Zhang, Y. Liu, Z. Qiu, M. Tong, Z. Long and G. Chen, Green Chem., 2022, 24, 136-141.

[5] F. Liu, S. Du, W. Zhang, J. Ma, S. Wang, M. Liu and F. Liu, Chem. Eng. J., 2022, 435, 134921.

[6] X. Wang, Q. Dong, Z. Xu, Y. Wu, D. Gao, Y. Xu, C. Ye, Y. Wen, A. Liu and Z. Long, *Chem. Eng. J.*, 2021, 403, 126460.

[7] Y. Chen, Q. Ren, X. Zeng, L. Tao, X. Zhou and H. Ji, Chem. Eng. Sci., 2021, 232, 116380.

[8] F. Liu, X. Duan, M. Liu, J. Du, J. Ma and F. Liu, Ind. Eng. Chem. Res., 2021, 60, 15027-15036.

[9] Y. Zhao, Y. Peng, C. Shan, Z. Lu, L. Wojtas, Z. Zhang, B. Zhang, Y. Feng and S. Ma, Nano Res., 2022, 15, 1145-1152.

- [10] C. Liu, L. Shi, J. Zhang and J. Sun, Chem. Eng. J., 2022, 427, 131633.
- [11] Y. Chen, Y. Li, H. Wang, Z. Chen and Y. Lei, Int. J. Mol. Sci., 2022, 23, 18.
- [12] S. Dhankhar, M. Nagaraja, Microporous Mesoporous Mater., 2020, 308, 110314.
- [13] P. Puthiaraj, H. Kim and Yu. K, Microporous Mesoporous Mater., 2020, 297, 110011.
- [14] Y. Jiang, D. Li, J. Zhang, Y. Zhao and J. Sun, J. Colloid Interface Sci., 2022, 618, 22-33.
- [15] F. Ma, F. Mi, M. Sun, T. Huang, Z. Wang, T. Zhang and R. Cao, Inorg. *Chem. Front.*, 2022, 9, 1812-1818.
- [16] P. Katekomol, M. Bojdys, J. Weber, A. Thomas, Chem. Mater., 2013, 25, 1542-1548.
- [17] J. Roeser, K. Kailasam, A. Thomas, ChemSusChem, 2012, 5, 1793-1799.