Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2023

(Supplementary Information)

Luminescent and Photocatalytic Activity of NaGd(MoO₄)₂:Dy³⁺/Eu³⁺ and NaGd(WO₄)₂:Dy³⁺/Eu³⁺ Nanorods for Efficient Sensing and Degradation of Antibiotic

Drug; Nitrofurantoin

Swaita Devi,^a Richa Singhaal,^a Charanjeet Sen,^a Haq Nawaz Sheikh,^{a,*}

^aDepartment of Chemistry, University of Jammu, Baba Sahib Ambedkar Road, Jammu 180006, India hnsheikh@rediffmail.com

Table of Contents

Pages

CONTENTS

11. Impact of different scavengers on the photodegradation of NFT	
12. FE-SEM image of NaGd(WO ₄) ₂ :Dy ³⁺ /Eu ³⁺ after photodegradation of NFT S13	
13. EDS spectrum of NaGd(WO ₄) ₂ :Dy ³⁺ /Eu ³⁺ after photodegradation of NFT S14	
14. PXRD spectrum of $NaGd(WO_4)_2$: Dy^{3+}/Eu^{3+} after photodegradation of NFTS15	
15. EDS data Tables	7

Fig. S1 TEM micrographs of (a) NaGd(MoO₄)₂ and (b) NaGd(MoO₄)₂:Dy³⁺/Eu³⁺ (7% Eu³⁺) nanorods prepared at 200 °C.

Fig. S2 TEM micrographs of (a) NaGd(WO₄)₂ and (b) NaGd(WO₄)₂:Dy³⁺/Eu³⁺ nanorods prepared at 200 °C.

Fig. S3 EDS spectra of (a) NaGd(MoO₄)₂ and (b) NaGd(MoO₄)₂:Dy³⁺/Eu³⁺ (7% Eu³⁺) nanorods prepared at 200 °C.

Fig. S4 EDS spectra of (a) NaGd(WO₄)₂ and (b) NaGd(WO₄)₂:Dy³⁺/Eu³⁺ (7% Eu³⁺) nanorods prepared at 200 °C.

Fig. S5 FT-IR spectra of NaGd(MoO₄)₂ synthesized at different temperatures (a) 140 (b) 160 (c) 180 (d) 200 and (e) 220 °C and (f) NaGd(MoO₄)₂:Dy³⁺/Eu³⁺ (7% Eu³⁺, 200 °C).

Fig. S6 FT-IR spectra of (a) NaGd(WO₄)₂ and (b) NaGd(WO₄)₂:Dy³⁺/Eu³⁺ (7% Eu³⁺) synthesized at 200 °C.

Fig. S7 Photoluminescence emission spectra of $NaGd(MoO_4)_2:Dy^{3+}$ displaying different emissions at varying Dy^{3+} ion content: (a) 3%, (b) 5%, (c) 7% and (d) $NaGd(WO_4)_2:Dy^{3+}$ (5%)

Fig. S8 Decay curves of NaGd(MoO₄)₂:Dy³⁺/Eu³⁺ nanorods with different Eu³⁺ ion content: (a) 1%, (b) 3, (c) 5%, (d) 7%, (e) 9% and (f) NaGd(WO₄)₂:Dy³⁺/Eu³⁺ (7% Eu³⁺).

Fig. S9 The plausible energy transfer mechanism between Gd^{3+} , Dy^{3+} and Eu^{3+} ions.

Fig. S10 UV-visible absorption spectra of $NaGd(WO_4)_2$: Dy^{3+}/Eu^{3+} and $NaGd(MoO_4)_2$: Dy^{3+}/Eu^{3+} nanorods.

Fig. S11 Time-resolved decay dynamics of NaGd(MoO₄)₂:Dy³⁺/Eu³⁺ after excitation at 295 nm in the presence of NFT (0, 20, 40, 60, 80 and 100 ppm).

Fig. S12 Pseudo-first order plots of photodegradation of NFT by $NaGd(MoO_4)_2$, $NaGd(WO_4)_2$, $NaGd(MoO_4)_2$: Dy^{3+}/Eu^{3+} and $NaGd(WO_4)_2$: Dy^{3+}/Eu^{3+} nanocatalysts under UV light irradiation.

Fig. S13 (A) Effect of different amount of $NaGd(WO_4)_2:Dy^{3+}/Eu^{3+}$ catalyst and (B) Initial NFT concentration on the photodegradation of NFT.

Fig. S14 Impact of different scavengers on the photodegradation of NFT.

Fig. S15 FE-SEM micrograph of $NaGd(WO_4)_2$: Dy^{3+}/Eu^{3+} after photodegradtion of NFT.

Fig. S16 EDS spectrum of $NaGd(WO_4)_2$: Dy^{3+}/Eu^{3+} after photodegradation of NFT.

Fig. S17 PXRD spectrum of NaGd(WO₄)₂:Dy³⁺/Eu³⁺ after photodegradation of NFT.

Table S1 Atomic and Weight % of elements present in NaGd(MoO₄)₂ and NaGd(MoO₄)₂:Dy³⁺/Eu³⁺ nanorods prepared at 200 °C

Elements	NaGd(MoO ₄) ₂		NaGd(MoO ₄) ₂ :Dy ³⁺ /Eu ³⁺	
	Wt %	At %	Wt %	At %
Sodium	0.85	1.74	1.99	2.27
Gadolinium	73.28	27.33	62.14	20.85
Molybdenum	5.25	1.68	2.65	0.78
Oxygen	24.31	68.58	21.80	71.90
Dysprosium	-	-	4.85	1.57
Europium	-	-	7.57	2.63

Table S2 Atomic and Weight % of elements present in $NaGd(WO_4)_2$ and $NaGd(WO_4)_2$:Dy³⁺/Eu³⁺ nanorods prepared at 200 °C

Elements	NaGd(WO ₄) ₂		NaGd(WO ₄) ₂ :Dy ³⁺ /Eu ³⁺	
	Wt %	At %	Wt %	At %
Sodium	1.55	2.98	1.95	5.08
Gadolinium	75.67	33.17	61.65	23.51
Tungstate	6.26	2.37	3.53	1.15
Oxygen	13.95	60.11	17.31	64.91
Dysprosium	-	-	6.32	2.33
Europium	-	-	7.53	3.68