Supporting Information for

Facile synthesis of porous LiMn₂O₄ nano-cubes for ultra-stable lithium-ion battery cathodes

Haiyun Cheng, Caiyu Ma, Wenyao Li *

School of Materials Science and Engineering, Shanghai University of Engineering Science, Shanghai 201620, China

*Corresponding author, E-mail: liwenyao314@gmail.com

Fig. S1 (a) N2 adsorption-desorption isotherm of LMO; (b) Pore size distribution profiles

Fig. S2 (a) SEM, (b) TEM and (c) XRD of LMO after cycling

Active material	Synthesis route	Coating or doping	Charge-discharge rate (C)	Cycle number	Initial specific capacity (mAh g ⁻¹)	Capacity retention	Ref.
$LiNi_{0.5}Mn_{1.5}O_4$	microwave-assisted	coating and doping	0.1	100	132	95.3%	[1]
$LiNi_{0.02}Fe_{0.05}Mn_{1.93}O_{4}$	solid-state	doping	1	500	113.4	76.9%	[2]
Fe-LiMn ₂ O ₄	solid-state	doping	0.3	200	89.2	89%	[3]
$LiMn_2O_4$	solid-state	none	1	100	115.7	68%	[4]
$LiMn_2O_4$	solid-state	none	1	100	128.7	86.2%	[5]
$LiMn_2O_4$	solid-state	none	0.2	50	119.1	87.2%	[6]
LiMn ₂ O ₄ @rGO	hydrothermal	coating	0.5	200	137.5	75%	[7]
LiMn ₂ O ₄	solid state	none	0.2	100	129.8	95%	[8]
$Li_{0.09}K_{0.91}Mn_{2}O_{4} \\$	solid-state	doping	0.5	120	137	94.8%	[9]
LiMn ₂ O ₄ /graphene	solid-state	coating	10	160	121.9	82.9%	[10]
LiMn ₂ O ₄	hydrothermal	none	0.1	50	120	84.1%	[11]
$LiMg_{0.05}Mn_{1.95}O_4$	molten-salt combustion	doping	1	100	122	86.4%	[12]
$Li_{1.05}Al_{0.02}Mn_{1.98}F_{0.02}O_{3.98}$	solid-state	doping	0.1	367	115.5	80%	[13]
$LiMn_2O_4$	precipitation-freeze drying	none	2	500	103.3	87.1%	[14]
$LiAl_{0.15}Mn_{1.85}O_4$	solid-state	doping	1	1000	103.3	72%	[15]
$LiMn_2O_4$	microwave synthesis	none	0.5	100	118.4	74.7%	[16]
$LiMn_2O_4$	solid-state	none	1	100	134	95.5%	[17]
$LiMn_2O_4$	homogeneous precipitation	none	0.1	100	112.5	92.5	[18]
LiMn ₂ O ₄ /graphene	solid-state	coating	1	500	111.5	<80%	[19]
★This work	solid-state	none	1	500	104	90.91%	

Table S1: Comparison of the cycling performance in this work with published literature

References

- Z. A. Qureshi, H. A. Tariq, H. M. Hafiz, R. A. Shakoor, S. AlQaradawi and R. Kahraman, J. Alloys Compd., 2022, 920, 165989.
- 2. Y. Ji, H. Liu, Y. Guo, J. Guo, M. Xiang, W. Bai, X. Liu and H. Bai, Colloids Surf., A, 2022, 648, 129259.
- S. N. Lee, D. H. Park, J. H. Kim, S. H. Moon, J. S. Jang, S. B. Kim, J. H. Shin, Y. Y. Park, and K. W. Park, *ChemElectroChem*, 2022, 9, e202200385.
- P. Li, S.h. Luo, X. Wang, L. Wang, J. Wang, F. Teng, Q. Wang, Y. Zhang, X. Liu, H. Zhang, J. Liang and X. Duan, Sep. Purif. Technol., 2021, 278, 119611.
- 5. Z. Chen, K. Huang, S. Liu and H. Wang, Trans. Nonferrous Met. Soc. China, 2010, 20, 2309-2313.
- 6. X. Zhou, M. Chen, H. Bai, C. Su, L. Feng and J. Guo, *Vacuum*, 2014, 99, 49-55.
- 7. Y. Chen, Y. Tian, Y. Qiu, Z. Liu, H. He, B. Li and H. Cao, *Mater. Today Adv.*, 2019, 1, 100001.
- 8. Q. Jiang, H. Zhang and S. Wang, Green Chem., 2016, 18, 662-666.
- 9. L. Xiong, Y. Xu, X. Xiao, J. Wang and Y. Li, *Electron. Mater. Lett.*, 2015, 11, 138-142.
- 10. Z. Li, X. Feng, L. Mi, J. Zheng, X. Chen and W. Chen, *Nano Res.*, 2018, 11, 4038-4048.
- 11. X. Xiang, Z. Fu and W. Li, J. Solid State Electrochem., 2013, 17, 1201-1206.
- 12. J. Huang, F. Yang, Y. Guo, C. Peng, H. Bai, J. Peng and J. Guo, Ceram. Int., 2015, 41, 9662-9667.
- P. Li, S. h. Luo, J. Wang, X. Wang, Y. Tian, H. Li, Q. Wang, Y. Zhang and X. Liu, *Int. J. Energ. Res.*, 2021, 45, 21158-21169.
- 14. X. Li, L. Yu, Y. Zhang, H. Shao and W. Zhang, *Ionics*, 2019, 26, 1591-1598.
- S. Wang, M. Xiang, Y. Lu, J. Guo, C. Su, H. Bai and X. Liu, J. Mater. Sci.: Mater. Electron, 2020, 31, 6036-6044.
- 16. X. Liu, P. Liu and H. Wang, *Ionics*, 2019, **25**, 5213-5220.
- 17. S. Xie, M. Yuan, T. Wang, J. Liu, J. Yan, Z. Li and J. Peng, Ceram. Int., 2022, 48, 10113-10119.
- 18. S. Dai, F. Zeng, J. Zhang, X. Li and Z. Shao, *Ionics*, 2021, 27, 4233-4240.
- Q. Ge, D. Wang, F. Li, D. Chen, G. Ping, M. Fan, L. Qin, L. Bai, G. Tian, C. Lv and K. Shu, *Russ. J. Electrochem.*, 2015, **51**, 125-133.