Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2023

Surface passivation of hematite photoanodes using iron phosphate

Fatemeh Parveh, Amin Yourdkhani * and Reza Poursalehi

Materials Engineering Department, Faculty of Engineering, Tarbiat Modares University, Tehran,

Iran.

*E-mail: a.yourd@modares.ac.ir; Fax: +98 21 8288-4390; Tel: +98 21 8288-3348

Table. S1. Different percentages of elements obtained from EDS analysis for crystalline and amorphous iron phosphate

Element	Weight%	Atomic%				
Crystalline						
0	23.04	67.42				
Р	0.42	0.63				
Fe	3.95	3.31				
Sn	72.59	28.63				
Sum	100.00	100.00				
Amorphous						
0	23.71	67.68				
Р	0.67	0.99				

Fe	5.16	4.22
Sn	70.47	27.12
Sum	100.00	100.00

Figure. S1. J-V curves of the samples with different deposition time for FePO₄.2H₂O in **a**) crystalline and **b**) amorphous states at 1.23 V vs. RHE under 1.5 G AM light.

Table. S2. Photocurrent density for thin films of $(\alpha$ -Fe₂O₃) and modified with crystalline and amorphous iron phosphate, with different thicknesses at 1.23 V vs. RHE.

Sample	Current density	Current density	V _{on} (V vs. RHE)
	(mA.cm ⁻²) of (α-	(mA.cm ⁻²) of (α-	before and after the
	Fe ₂ O ₃)	Fe ₂ O ₃ /Fe-Pi)	modification

Crystalline						
5 min	0.53	0.60	0.80> 0.75			
8 min	0.52	0.71	0.81 → 0.76			
10 min	0.53	0.55	0.83 0.77			
· · · · · ·						
Amorphous						
30 min	0.49	0.65	0.83 0.74			
37 min	0.48	0.61	0.83 0.72			
40 min	0.48	0.62	0.83 0.72			

The separation and catalytic efficiencies of the photo electrode were evaluated uisng the method reported by Dotan et al. [1]. The photocurrent relates to the separation and catalytic efficiencies according to the following equation [1]:

$$J_{H_20} = J_{abs} \times \eta_{separation} \times \eta_{catalytic} \tag{1}$$

where J_{abs} is the photon absorption rate, which is presented as a current. It is determined by multiplying the AM1.5G spectrum by the absorption spectrum followed by integration over wavelength. $\eta_{separation}$ is the charge separation efficiency. $\eta_{catalytic}$ is also the catalytic efficiency for water oxidation. By adding Na₂SO₃ to the electrolyte, it acts as a very effective hole scavenger and the corresponding photocurrent is denoted as $J_{Na_2SO_3}$ as following:

$$J_{Na_2SO_3} = J_{abs} \times \eta_{separation} \tag{2}$$

Based on the above two equations, $\eta_{separation}$ and $\eta_{catalytic}$ are obtained according to the following equations:

$$\eta_{catalytic} = \frac{J_{H_2O}}{J_{Na_2SO_3}} \tag{3}$$

$$\eta_{separation} = \frac{J_{Na_2SO_3}}{J_{abs}} \tag{4}$$

1. H. Dotan, K. Sivula, M. Gr_tzel, A. Rothschild, S. C. Warren, Energy Environ. Sci. 2011, 4, 958–964.