New Journal of Chemistry

Electronic Supplementary Information

Improved electronic interaction and dispersing effect derived from the F-doped TiO² support on RuO^x to boost the electrocatalytic oxygen evolution performance

Hongrui Jia, ‡^a Xin Yang, ‡^a Xiangshe Meng,^a Guoxin Zhang^a and Guoqiang Li^{*a}

^a Al-ion Battery Research Center, College of Energy Storage Technology, Shandong

University of Science and Technology, Qingdao 266590, China

‡ These two authors contributed equally to this work.

Email: ligq@sdust.edu.cn

1. Experimental Section

1.1. Materials

The chemical reagents RuCl₃ xH_2O ($x = 3$), TiO₂ (5-10 nm, Anatase), NH₄F, $CO(NH₂)₂$, NaH₂PO₂ H₂O and NaBH₄ were purchased from the Aladdin Co., Ltd. Ethanol and $H₂SO₄$ solutions were purchased from the Beijing Chemical Co. and used without further purification. 5 wt% Nafion® ionomer was purchased from the DuPont Co. Commercial IrO₂ denoted as IrO₂(CM) was purchased from the Alfa Aesar Chemical Co., Ltd. Commercial Pt/C (20 wt%Pt) denoted as Pt/C(CM) was purchased from the Johnson Matthey Company. F-SnO₂ (FTO) conductive glass was purchased from the NSG Co., Ltd. All solutions in this work were modulated using Millipore-MiliQ water (resistivity: $\rho > 18$ M Ω ^{*}cm).

1.2. Catalysts Preparation

A series of F-doped $TiO₂$ (F-TiO₂) supports were synthesized through high-temperature heating $TiO₂$ with NH₄F, the calcination temperatures were 300, 350, 400 and 500 °C, the mass ratios of TiO_2 : $NH_4F = 1:5$, 1:10, 1:15, 1:20. In detail, the $TiO₂$ powder was firstly grounded with NH₄F powder. Then, the powder mixture was placed in a tubular oven and reacted for 2 h under the N_2 atmosphere to obtain F-TiO₂. The N-TiO₂ and P-TiO₂ counterparts were also synthesized through the similar procedure except for the different dopants, including $CO(NH_2)_2$ and NaH_2PO_2 , the synthesis conditions refer to the $F-TiO₂$ support.

The supported $RuO_x/F-TiO_2$ catalyst with Ru content of 50 wt% was prepared through a NaBH₄ reduction route. Firstly, 50 mg F-TiO₂ was ultrasonically dispersed in 100 mL deionized water for 1 h. Then, a certain amount of $RuCl₃3H₂O$ was added to the resulting suspension and stirred for 1 h. Subsequently, a certain amount of aqueous NaBH₄ solution (nNaBH₄ : nRuCl₃ = 8:1) was quickly injected into the above suspension and stirred continuously for 3 h. Finally, the suspension was filtered and washed with deionized water and ethanol, then dried at $60\,^\circ\text{C}$ in the oven overnight to obtain the target catalyst. RuO_x/N -TiO₂ and RuO_x/P -TiO₂ catalysts were prepared through the similar procedure. Pure RuO_x catalyst denoted as RuO_x (hm) was

prepared through the similar procedure except for the addition of support. IrO $_2$ (CM) catalyst was adopted as comparison.

1.3. Physical Characterization

Electrical Conductivity Measurement: The electrical conductivity of $F-TiO₂$ support was measured by the four-point probe technique (RTS-8, China).

X-ray Diffraction (XRD): The phase composition of the catalysts was investigated by XRD characterization using D8-Advance X-ray diffractometer (BRUKER Company, Germany) with the Cu K_a (l $\frac{1}{4}$ 1.5405 Å) as radiation source operating at 40 kV and 200 mA. Diffraction peaks were recorded in the range of 2θ = 20-90 $^{\circ}$ at the scanning rate of 2 $^{\circ}$ min⁻¹.

X-ray Photoelectron Spectroscopy (XPS): The surface elemental composition, chemical state and electronic structure of the catalysts were investigated by XPS spectrometer (Kratos Ltd. XSAM-800, UK) with Al K_{α} monochromatic source. All the binding energies were calibrated using the C 1s binding energy peak (284.6 eV) as the reference.

Transmission Electron Microscopy (TEM): The morphology and composition of the catalysts were characterized with TEM, high-resolution transmission electron microscopy (HRTEM), high-angle annular dark-field scanning TEM (HAADF-STEM), elemental mapping analysis and energy-dispersive X-ray spectroscopy (EDX) by Tecnai G2 F20 S-TWIN electron microscope (FEI Company, USA) working at an accelerating voltage of 200 kV.

Inductively Coupled Plasma Optical Emission Spectroscopy (ICP-OES): ICP-OES (X Series 2, Thermo Scientific USA) analysis was applied to quantify the electrooxidative-dissolution of Ru after the stability test.

1.4. Electrochemical Measurement

Three-electrode test: Electrochemical performance measurements were firstly investigated with conventional three-electrode setup operated on Princeton Applied Research Model273 Potentiostat/Galvanostat. The electrolyte solution was $0.5 \text{ mol} L^{-1}$ $H₂SO₄$ purged with high-purity $N₂$ for at least 30 min. The working electrode substrate, counter electrode and reference electrode were glassy carbon electrode (GC, 3 mm diameter), Pt plate and saturated calomel electrode $(Hg/Hg_2Cl_2;$ SCE), respectively. All the potentials reported were calibrated with the reversible hydrogen electrode (RHE) that E (RHE) = E (SCE) + 0.242 V + 0.059^*pH . To prepare the working electrode: firstly, 3 mg of the catalyst was ultrasonically dispersed in 315 μL solutions containing of 15 μL Nafion® solution and 300 μL ethanol solution for at least 30 min; secondly, 2.23 μL catalyst inks was pipetted and spread on the glassy carbon substrate; lastly, the electrode was obtained after the solvent volatilized with the catalyst loading was 0.3 mg cm⁻².

The outer charge (Q_{outer}) was calculated through fitting the cyclic voltammetry (CV) curves (0.40-1.40 V) obtained at the scanning rate of 300 mV s^{-1} .

Linear sweep voltammetry (LSV) curves for OER were recorded in a potential window between 1.10 and 1.70 V at the scanning rate of 5 mV s^{-1} in N₂-saturated H2SO⁴ solution at room temperature. All data were corrected for 95% *iR* potential drop, *R* is the solution resistance.

The mass activity was normalized with the equation as follows:

$$
i_{\text{Mass activity}} = \frac{i_{\text{Measured}}}{m_{\text{Ru}}} \tag{1}
$$

where m_{Ru} is the mass loading for all the Ru element.

The electrochemical impedance spectra (EIS) measurements were conducted on an Autolab potentiostat in the frequency range from 0.1 Hz to 10 kHz at the potential of 1.50 V, a 10 mV amplitude of sinusoidal potential perturbation was employed during the measurements.

The galvanostatic tests were measured using the FTO conductive glass as the working electrode substrate. Testing conditions included a constant current density of 10 mA cm⁻² in N₂-saturated H₂SO₄ solution at room temperature, and the catalyst loading was also 0.3 mg cm^{-2} .

Two-electrode test: Two-electrode overall water splitting tests were performed with $RuO_x/F-TiO_2$, $RuO_x(hm)$ or $IrO_2(CM)$ as the anode catalyst, and $Pt/C(CM)$ as the cathode catalyst. FTO was used as the working electrode substrate. The anode catalyst

loading was 0.3 mg cm⁻², and the cathode catalyst loading was 0.1 mg cm⁻². LSV experiments were performed with the voltage window ranged from 1.0 to 2.0 V at the scanning rate of 5 mV s⁻¹ in 0.5 M H₂SO₄ at room temperature. The galvanostatic test was performed at the constant current density of 10 mA cm^{-2} for 20 h.

2. Figures and Tables

Fig. S1 LSV curves of RuO_x/F-TiO₂ with varying (a) calcination temperature of F-TiO₂ and (b) mass ratio of TiO₂ : NH₄F.

Fig. S2 LSV curves of $RuO_x/F-TiO_2$, $RuO_x/N-TiO_2$ and $RuO_x/P-TiO_2$.

Fig. S3 XRD patterns of $RuO_x/F-TiO_2$, RuO_x/TiO_2 and $RuO_x(hm)$.

Fig. S4 (a) XPS survey spectra. High-resolution XPS spectra of the deconvoluted Ru $3p_{1/2}$ for (b) $RuO_x/F-TiO_2$, (c) RuO_x/TiO_2 and (d) $RuO_x(hm)$.

Fig. S5 (a) TEM image of RuO_x/TiO_2 and (b) corresponding histogram of the particle size distribution.

Fig. S6 TEM image of RuO_x(hm).

Fig. S7 EDX spectrum of RuO_x/F-TiO₂.

Fig. S8 (a) CV curves at the scanning rate of 300 mV s⁻¹ in N₂-saturated 0.5 M H₂SO₄ solution. (b) Histograms of the outer charge.

Fig. S9 Galvanostatic test of $RuO_x/F-TiO₂$ at the constant current density of 10 mA cm^2 for 20 h.

Table S1 XPS analysis of the catalysts.

Table S2 R_s and R_{ct} values fitted from the EIS.