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Electrochemical measurement methods

The electrochemical performance of electrode was firstly investigated in a three-electrode system 

using 6M KOH as the electrolyte. BPC, acetylene black and polytetrafluoroethylene binder were 

mixed together to give a weight ratio of 80:15:5 in ethanol, and formed slurry that was pressed onto 

a nickel foam current collector (1×1 cm2) to afford working electrodes. The working electrodes were 

pressed under 10 MPa for 10 s and then dried under vacuum at 60 °C for 12 h for later tests, the 

mass loading of the active materials (including BPC, acetylene black and PTFE) in each working 

electrode determined as ~ 3.0 mg cm-2. A platinum foil electrode (1 × 2 cm2) and an Hg/HgO 

electrode were used as the counter electrode and reference electrode in a standard three-electrode 

setup, respectively. Cyclic voltammetry (CV), galvanostatic charge/discharge (GCD) and 

electrochemical impedance spectroscopy (EIS) in a frequency range of 100 kHz to 10 mHz at the 

open circuit potential with 5 mV amplitude were used to study the capacitive performance of the 

samples. In a three-electrode system, the specific capacitances were calculated from the charge-

discharge curves according to the following equation:

        (S1)
𝐶 =

𝐼∆𝑡
𝑚∆𝑉

Where C (F g-1) is the specific capacitance; I (A) is the discharge current; Δt (s) is the discharge 

time; m (mg) is the mass of the active materials; ΔV (V) is the potential window. 

The symmetric aqueous supercapacitors in 6 M KOH and 1 M Na2SO4 aqueous solution were 
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assembled in a 2032 stainless steel coin cell using non-woven fabric to separate the two working 

electrodes with the same size and active material loadings of ~3.0 mg cm-2 on each working 

electrode. The symmetric solid-state supercapacitor was built face-to-face by using two same PBPC-

600 electrodes, which were immersed into carboxymethylcellulose sodium/sodium sulfate (CMC-

Na/Na2SO4) gel electrolyte with a non-woven fabric separator. The CMC-Na/Na2SO4 gel here was 

prepared as follows: 3 g CMC-Na powder (viscosity: 1200 mPa s) was dissolved into 50 mL 6 mol 

L-1 Na2SO4 solution under stirring at 70 °C until a transparent gel obtained. CV, GCD, EIS in a 

frequency range of 100 kHz to 10 mHz at the open circuit potential with 5 mV amplitude and 10000 

charge-discharge cycles were studied to evaluate the performance of symmetric supercapacitors. For 

the symmetric supercapacitors, the specific capacitances, specific energy density and specific power 

density were calculated from the charge-discharge curves according to the following equation: 

  (S2)
𝐶 =

4𝐼∆𝑡
𝑚∆𝑉
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×
1
4

× 𝐶∆𝑉2      

        (S4)
𝑃 =

3600𝐸
∆𝑡

Where C (F g-1) is the specific capacitance; I (A) is the discharge current; Δt (s) is the discharge 

time; m (mg) is the mass of the active materials; ΔV (V) is the potential window. E (Wh kg-1) is the 

average energy density; P (W kg−1) is the average power density.

Figures and tables

Fig. S1 SEM images of waste eucalyptus bark.



Fig. S2 CV curves of BPCs in a three-electrode system using 6 M KOH as the electrolyte.

Fig. S3 GCD curves of BPCs in a three-electrode system using 6 M KOH as the electrolyte.



Fig. S4 Supercapacitance performance in a two-electrode system using 6M KOH as electrolyte: CV 

curves at a scan rate of 10 mV s−1 under different operating voltage of (a) RBPC-600, (b) HBPC-600 

and (c) PBPC-600; CV curves at different scan rate of (d) RBPC-600, (e) HBPC-600 and (f) PBPC-

600; GCD curves under different current density of (g) RBPC-600, (h) HBPC-600 and (i) PBPC-600.

Table S1 Comparison of the specific capacitance of PBPC-600 electrode with some reported carbon 

materials.

Materials
Electrolyte/

3E
Specific capacitance

(F g–1)
Reference

Hierarchical porous active carbon from fallen 
leaves

6M KOH 310.0 (0.5 A g–1) 1

Activated biomass carbon made from bamboo 3M KOH 293.0 (0.5 A g–1) 2

Tea-leaves based nitrogen-doped porous carbon 2M KOH 296.0 (0.5 A g–1) 3

graphene-like activated carbon derived from 
rice straw

3M KOH 255.0 (0.5 A g–1) 4

Rose-derived 3D carbon nanosheets 6M KOH 208.0 (0.5 A g–1) 5

Porous carbon derived from lotus seedpod shell 3M KOH 165.0 (0.5 A g–1) 6

Superhydrophilic carbon derived from sweet 
potato leaves

6M KOH 296.0 (0.5 A g–1) 7



Porous carbon derived from sorghum stalk 6M KOH 216.5 (0.5 A g–1) 8

Crosscutting bamboo-derived porous carbon 6M KOH 280.0 (0.5 A g–1) 9

Porous carbon derived from ginkgo leaves 6M KOH 323.2 (0.5 A g–1) 10

Biomass porous carbon derived from waste 
eucalyptus bark (PBPC-600)

6M KOH 349.4 (0.5 A g–1) This work

Table S2 Comparison of the energy density of the PBPC-600 based symmetric quasi-solid-state 

supercapacitor with recently published carbon-based aqueous symmetric supercapacitors.

 Electrode materials Electrolyte
Max energy 

density (Wh kg–1)
Reference

Activated carbon synthesized from oil palm 
kernel shell

1 M Na2SO4 7.4 (300.0 W kg−1) 11

Porous carbon derived from sorghum stalk 0.5 M Na2SO4 9.8 (225.4 W kg−1) 8

Peanut shells-derived 3D porous carbon PVA/Li2SO4 9.0 (380.0 W kg−1) 12

High graphitic biomass porous carbon 1 M Na2SO4 
14.2 (218.8 W 

kg−1)
13

Monolithic carbon sponge PVA/ KOH 5.6 (250.0 W kg−1) 14

Graphitic hierarchical porous carbon 
nanosheets

1 M Na2SO4 11.7 (80.0 W kg−1) 15

Honeycomb-like biomass carbon material 1 M Na2SO4 11.1 (20.0 W kg−1) 16

Tobacco-stem-derived porous carbon 1 M Na2SO4 7.8 (444.0 W kg−1) 17

O, N-doped porous carbon derived from 
bamboo shoots shells

1 M Na2SO4 
13.2 (546.6 W 

kg−1)
18

Biomass porous carbon derived from waste 
eucalyptus bark (PBPC-600)

CMC-Na/Na2SO4 
gel 

15.0 (160.0 W 
kg−1)

This work
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