Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2023

Supporting Information

Imidazole-based fluorescent probes: Concomitant effects of N1 substitution and lone pair on selective

recognition of Picric Acid

Sandhya Rani Nayak¹, Sabita Patel¹ and Sivakumar Vaidyanathan^{2*}.

¹Department of Chemistry, National Institute of Technology Rourkela,

Rourkela-769 008, Odisha, India.

²Department of Chemistry, Indian Institute of Technology, Hyderabad

Kandi, Sangareddy-502285, Telangana, India.

Contents:

SI1. NMR (¹H) spectra of Imidazole derivatives.

- **Fig. SI1.** ¹H NMR spectrum of 2-NTPI-1
- Fig. SI1(i). ¹³C NMR spectrum of 2-NTPI-1
- Fig. SI2. ¹H NMR spectrum of 2-NTPI-2
- Fig. SI2(i). ¹³C NMR spectrum of 2-NTPI-2
- Fig. SI3. ¹H NMR spectrum of 2-NTPI-3
- Fig. SI3(i). ¹³C NMR spectrum of 2-NTPI-3
- Fig. SI4. ¹H NMR spectrum of 2-NTPI-4
- Fig. SI4(i). ¹³C NMR spectrum of 2-NTPI-4
- Fig. SI5. ¹H NMR spectrum of 2-NTPI-5
- Fig. SI5(i). ¹³C NMR spectrum of 2-NTPI-5
- SI2. Mass spectra of Imidazole derivatives.
- Fig. SI6. Mass spectrum of the 2-NTPI-1
- Fig. SI7. Mass spectrum of the 2-NTPI-2
- Fig. SI8. Mass spectrum of the 2-NTPI-3

Fig. SI9. Mass spectrum of the 2-NTPI-4

Fig. SI10. Mass spectrum of the 2-NTPI-5

SI3. ¹H-NMR spectra with PA (0, 0.5, 1.0 equiv) in CDCl₃ and DMSO.

SI4. Change in the fluorescence upon the addition of different quenchers.

Table ST1: The Comparison of our luminophores with other reported PA sensors.

SI5 DFT analysis of luminophores with and without PA.

SI6. Lifetime of the respective luminophores in presence and absence of PA.

Table ST2: Lifetime of the respective luminophores.

 Table ST3: Computed Vertical Transitions and Their Oscillator Strengths and Configurations

Table ST4: FMO orbitals of the luminophores

Experimental section

Materials:

All the reaction carried out under nitrogen atmosphere. Commercially available reagents (sigma aldrich) were used as purchased without any further purification. All the reaction were monitored by thin-layer chromatography (TLC) with silica gel 60 F_{254} Aluminium plates (Merck). Column chromatography was carried out using silica gel (Sigma-Aldrich).

General information for Measurements:

¹H NMR and ¹³C NMR spectra were measured using an AV 400 Avance-III 400 MHz FT-NMR spectrometer (Bruker Biospin International, Switzerland) with tetramethylsilane (TMS) as the internal standard reference. The absorption and photoluminescence (PL) excitation and emission spectra of the synthesized luminophores were measured using a SHIMADZU UV-2450 spectrophotometer and a HORIBAFLUOROMAX – 4P spectrophotometer, respectively. Thin film making with the help of spin coating instrument (Holmarc Spin coater, Model No. HO-TH-OSC) by stages were at 1000 rpm (60 sec). The prepared thin film were kept under UV drying for 10 sec to get excess solvent evaporation. The absolute fluorescence quantum yield was measured with

Edinburgh Spectrofluorometer, FS5 with Integrating Sphere SC-30. The electrochemical properties of the fluorophores were measured by using Cyclic voltammetry (CV) experiments were performed in dimethyl formamide (DMF) solution containing 0.1 M tert-butyl ammonium perchlorate (Bu₄NClO₄) using as the supporting electrolyte, and the scan rate was continued at 100 mV s⁻¹ using an AUTOLAB 302N Modular potentiostat at room temperature. The working (glass-carbon rod), auxiliary (counter, Pt wire) and reference (Ag/AgCl wire) electrode were used for CV analysis. The CIE color chromaticity coordinates of the fluorophores were calculated from the emission spectral values by using MATLAB software.

Detection Measurement of Nitroaromatic compound:

For quantitative measurement, the emission measurements were performed in increasing the different concentrations of PA in THF(1 x10⁻⁵ M). Subsequent addition of 0μ L to 120μ L in the respective fluorophores (1 x10⁻⁵ M) of the solution. By subsequent addition of picric acid the absolute decreasing of the intensity was observed as compared to other nitroaromatics compound. We also check the response time within 10sec adding the concentration of PA the quenching of emission happens which results that even if with the low concentration of PA the fluorophores perfectly responses.

NMR Spectra of all luminophores:

Fig. SI1. ¹H NMR spectrum of 2-NTPI-1.

Fig. SI1(i). ¹³C NMR spectrum of 2-NTPI-1.

Fig. SI2. ¹H NMR spectrum of 2-NTPI-2.

Fig. SI2(i). ¹³C NMR spectrum of 2-NTPI-2.

Fig. SI3(i). ¹³C NMR spectrum of 2-NTPI-3.

Fig. SI4(i). ¹³C NMR spectrum of 2-NTPI-4.

Fig. SI5(i). ¹³C NMR spectrum of 2-NTPI-5.

Mass Spectra of all the luminophores.

Fig. SI6. Mass spectrum of the 2-NTPI-1.

Fig. SI7. Mass spectrum of the 2-NTPI-2.

Fig. SI8. Mass spectrum of the 2-NTPI-3

Fig. SI9. Mass spectrum of the 2-NTPI-4

SI3. ¹H-NMR spectra with PA (0, 0.5, 1.0 equiv) in CDCl₃. ¹H NMR Spectra of all luminophores after the addition of PA :

Fig. SI11 ¹H NMR spectrum of 2-NTPI-3 with PA (0, 0.5, 1.0 equiv) in CDCl₃.

Fig. SI12 ¹H NMR spectrum of 2-NTPI-4 with PA (0, 0.5, 1.0 equiv) in CDCl₃.

Fig. SI13 ¹H NMR spectrum of 2-NTPI-5 with PA (0, 0.5, 1.0 equiv) in CDCl₃.

Fig. SI14. Change in the fluorescence of 2-NTPI-3 upon the addition of different quenchers excited at 341nm in THF solvent ($1x10^{-5}$ M).

Fig. SI15. (a) Change in the fluorescence of 2-NTPI-3 upon the addition of PA excited at 341 nm in THF solvent (1x10⁻⁵ M). (b) Stern– Volmer plots of 2-NTPI-3 using PA as a quencher. Inset: Stern–Volmer plots at lower concentration region of PA.

Fig. SI16. Change in the fluorescence of 2-NTPI-3 upon the addition of different quenchers excited at 337 nm in THF solvent $(1x10^{-5} \text{ M})$.

Fig. SI17. (a) Change in the fluorescence of 2-NTPI-4 upon the addition of PA excited at 337 nm in THF solvent (1x10⁻⁵ M). (b) Stern– Volmer plots of 2-NTPI-4 using PA as a quencher. Inset: Stern–Volmer plots at lower concentration region of PA.

Fig. SI18. Change in the fluorescence of 2-NTPI-5 upon the addition of different quenchers excited at 335 nm in THF solvent $(1x10^{-5} \text{ M})$.

Fig. SI19. (a) Change in the fluorescence of 2-NTPI-5 upon the addition of PA excited at 335 nm in THF solvent (1x10⁻⁵ M). (b) Stern– Volmer plots of 2-NTPI-5 using PA as a quencher. Inset: Stern–Volmer plots at lower concentration region of PA.

Fig. SI20. The absorbance spectra of picric acid in THF solution (10^{-6} M) .

Fig. SI21. (a) Change in the fluorescence of 2-NTPI-1, 2-NTPI-2, 2-NTPI-3 and 2-NTPI-4 upon the addition of DNT excited at 325 nm in THF solvent (1x10⁻⁵ M).

Table ST1: The Comparison of our luminophores with other reported PA sensors.

S. No	Sensor	Solvent	Quenching constant (M-	Detection limit (M)	Ref.
			1)	()	
1	Hexaphenylsilole	THF/Water	-	4.81 ppb	1
2	Tetraphenylethene	Water	2.7 x 10 ⁵	0.4 ppm	2

3 Polymers based on di (naphthalen-2-yl)- 1,2-diphenylethene H2O/THF (9/1) 4.70×10^4 1.81×10^6 3 4 Triazine-COF THF 8.71×10^4 10.7 ppm 4 5 poly(silylenevinylene) THF 8.71×10^4 10.7 ppm 4 6 Diphenylfumaronitriles H2O/THF (8/2) 5.60×10^4 1.80×10^{-10} 6 7 Imidazole derivatives H2O/THF (8/2) 1.30×10^4 3.55×10^6 7 8 Thiophene aromatic amine derivatives THF $ 5.70 \times 10^6$ 8 9 3-(Benzyloxy)-2-(4- (di-p-tolylamino)phenyl)- 4H-orber Water 1.93×10^4 3.70×10^-9 9					1	
3Polymers based on di (naphthalen-2-yl)- 1,2-diphenyletheneH2O/THF (9/1) 4.70×10^4 1.81×10^-6 34Triazine-COFTHF 8.71×10^4 10.7 ppm 4 5poly(silylenevinylene)THF 8.491×10^-3 1.0 ppm 5 6DiphenylfumaronitrilesH2O/THF (8/2) 5.60×10^4 1.80×10^{-10} 6 7Imidazole derivativesH2O/DMF (9/1) 1.30×10^4 3.55×10^{-6} 7 8Thiophene aromatic amine derivativesTHF (9/1) -5.70×10^{-6} 8 9 $3-(Benzyloxy)-2-(4-(di-p-tolylamino)phenyl)-(H-chormen-4.ore)Water1.93 \times 10^43.70 \times 10^-99$						
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	3	Polymers based on di	H ₂ O/THF	4.70×10^{4}	1.81×10^{-6}	3
1.2-diphenyletheneImage: Image:		(naphthalen-2-yl)-	(9/1)			
4Triazine-COFTHF 8.71×10^4 10.7 pm 4 5poly(silylenevinylene)THF 8.491×10^3 1.0 ppm 5 6Diphenylfumaronitriles $\mathbb{R} \longrightarrow \mathbb{Q} \times \mathbb{Q} \times \mathbb{Q} \times \mathbb{Q}$ H_{2O}/THF 5.60×10^4 1.80×10^{-10} 6 7Imidazole derivatives H_{2O}/DMF 1.30×10^4 3.55×10^{-6} 7 8Thiophene aromatic amine derivativesTHF $ 5.70 \times 10^{-6}$ 8 9 $3.(\text{Benzyloxy})-2.(4-$ (di-p-tolylamino)phenyl)- $4H=0^{-1}$ Water 1.93×10^4 3.70×10^{-9} 9		1,2-diphenylethene				
4Triazine-COFTHF 8.71×10^4 10.7 ppm 4 5poly(silylenevinylene)THF 8.491×10^3 1.0 ppm 5 6DiphenylfumaronitrilesH2O/THF 5.60×10^4 1.80×10^{-10} 6 7Imidazole derivativesH2O/DMF 1.30×10^4 3.55×10^6 7 8Thiophene aromatic amine derivativesTHF $ 5.70 \times 10^6$ 8 9 $3.(Benzyloxy)-2.(4-$ (di-p-tolylamino)phenyl)- dHerborgene-derivativesWater 1.93×10^4 3.70×10^{-9} 9						
4Triazine-COFTHF 8.71×10^4 10.7 pm 4 5poly(silylenevinylene)THF 8.491×10^3 1.0 pm 5 6DiphenylfumaronitrilesH2O/THF (8/2) 5.60×10^4 1.80×10^{-10} 6 7Imidazole derivativesH2O/DMF (9/1) 1.30×10^4 3.55×10^{-6} 7 8Thiophene aromatic amine derivativesH2THF $ 5.70 \times 10^{-6}$ 8 9 $3.(Benzyloxy)-2.(4-$ (di-p-tolylamino)phenyl)- 4H-echemerWater 1.93×10^4 3.70×10^{-9} 9						
Image: space of the second systemImage: space						
4 Triazine-COF THF 8.71×10^4 10.7 ppm 4 5 poly(silylenevinylene) THF 8.491×10^3 1.0 ppm 5 6 Diphenylfumaronitriles H2O/THF 5.60×10^4 1.80×10^{-10} 6 7 Imidazole derivatives H2O/DMF 1.30×10^4 3.55×10^{-6} 7 8 Thiophene aromatic amine derivatives THF $ 5.70 \times 10^{-6}$ 8 9 $3.(Benzyloxy)-2.(4-(di-p-tolylamino)phenyl)-(di-p-tolylamino)phenyl-$		$ \uparrow\uparrow\uparrow\uparrow\uparrow$				
$\begin{array}{ c c c c c } \hline & & & & & & & & & & & & & & & & & & $						
4Triazine-COFTHF 8.71×10^4 10.7 ppm 45poly(silylenevinylene)THF 8.491×10^3 1.0 ppm 56DiphenylfumaronitrilesH2O/THF (8/2) 5.60×10^4 1.80×10^{-10} 67Imidazole derivativesH2O/DMF (9/1) 1.30×10^4 3.55×10^{-6} 78Thiophene aromatic amine derivativesTHF- 5.70×10^{-6} 893-(Benzyloxy)-2-(4- (di-p-tolylamino)phenyl)- 4H-chromen-4-eneWater 1.93×10^4 3.70×10^{-9} 9						
4 Triazine-COF THF 8.71×10^4 10.7 ppm 4 5 poly(silylenevinylene) THF 8.491×10^3 1.0 ppm 5 6 Diphenylfumaronitriles H2O/THF 5.60×10^4 1.80×10^{-10} 6 7 Imidazole derivatives H2O/DMF 1.30×10^4 3.55×10^{-6} 7 8 Thiophene aromatic amine derivatives THF $ 5.70 \times 10^{-6}$ 8 9 3-(Benzyloxy)-2-(4- (di-p-tolylamino)phenyl)- dH-chromer-dene Water 1.93×10^4 3.70×10^{-9} 9						
4 Triazine-COF THF 8.71×10^4 10.7 ppm 4 5 poly(silylenevinylene) THF 8.491×10^3 1.0 ppm 5 6 Diphenylfumaronitriles H2O/THF 5.60×10^4 1.80×10^{-10} 6 7 Imidazole derivatives H2O/DMF 1.30×10^4 3.55×10^{-6} 7 8 Thiophene aromatic amine derivatives THF $ 5.70 \times 10^{-6}$ 8 9 $3.(Benzyloxy)-2.(4-(di-p-to))-(di-d-dope)-4-(dope)-4-$						
4 Triazine-COF THF 8.71×10^4 10.7 ppm 4 5 poly(silylenevinylene) THF 8.491×10^3 1.0 ppm 5 6 Diphenylfumaronitriles H2O/THF 5.60×10^4 1.80×10^{-10} 6 7 Imidazole derivatives H2O/DMF 1.30×10^4 3.55×10^{-6} 7 8 Thiophene aromatic amine derivatives THF $ 5.70 \times 10^{-6}$ 8 9 $3.(Benzyloxy)-2.(4-(di-p-top)/2-44-opc) - 44-opc)$ Water 1.93×10^4 3.70×10^{-9} 9						
4 Triazine-COF THF 8.71×10^4 10.7 ppm 4 5 poly(silylenevinylene) THF 8.491×10^3 1.0 ppm 5 6 Diphenylfumaronitriles H2O/THF 5.60×10^4 1.80×10^{-10} 6 7 Imidazole derivatives H2O/DMF 1.30×10^4 3.55×10^{-6} 7 8 Thiophene aromatic amine derivatives THF $ 5.70 \times 10^{-6}$ 8 9 $3.(Benzyloxy)-2-(4-(di-p-tolylamino)phenyl)-(4H-chromen-4-one) Water 1.93 \times 10^4 3.70 \times 10^{-9} 9 $						
5poly(silylenevinylene)THF 8.491×10^3 1.0 ppm 56Diphenylfumaronitriles $H_{2O/THF}$ 5.60×10^4 1.80×10^{-10} 67Imidazole derivatives $H_{2O/DMF}$ 1.30×10^4 3.55×10^{-6} 78Thiophene aromatic amine derivativesTHF $ 5.70 \times 10^{-6}$ 89 $3-(Benzyloxy)-2-(4-(di-p-tolylamino))henyl)-Water1.93 \times 10^43.70 \times 10^{-9}9$	4	Triazine-COF	THF	8.71×10^{4}	10.7 ppm	4
6DiphenylfumaronitrilesH2O/THF (8/2) 5.60×10^4 1.80×10^{-10} 67Imidazole derivativesH2O/DMF (9/1) 1.30×10^4 3.55×10^{-6} 78Thiophene aromatic amine derivativesTHF- 5.70×10^{-6} 893-(Benzyloxy)-2-(4- (di-p-tolylamino)phenyl)- 4H-chromen-4-oneWater 1.93×10^4 3.70×10^{-9} 9	5	poly(silylenevinylene)	THF	8.491x10 ³	1.0 ppm	5
\mathbb{R} \mathbb{C} \mathbb{C} \mathbb{C} \mathbb{C} \mathbb{C} \mathbb{C} \mathbb{C} 7Imidazole derivativesH2O/DMF (9/1) 1.30×10^4 3.55×10^{-6} 78Thiophene aromatic amine derivativesTHF- 5.70×10^{-6} 8 \mathbb{C} \mathbb{N} \mathbb{H}_2 \mathbb{N} \mathbb{H}_2 \mathbb{N} \mathbb{N} \mathbb{C} \mathbb{N} \mathbb{N} \mathbb{C} \mathbb{N} \mathbb{N} \mathbb{N} \mathbb{C} \mathbb{N} <	6	Diphenylfumaronitriles	H ₂ O/THF	5.60×10^{4}	1.80×10^{-10}	6
Image: CN or			(8/2)			
CN CN R H2O/DMF 1.30×10^4 3.55×10^{-6} 77Imidazole derivativesH2O/DMF 1.30×10^4 3.55×10^{-6} 78Thiophene aromatic amine derivativesTHF- 5.70×10^{-6} 89 $3.(Benzyloxy)-2-(4-)$ (di-p-tolylamino)phenyl)- 4H-schromen-4-oneWater 1.93×10^4 3.70×10^{-9} 9						
CNCNRImage: CNCNR7Imidazole derivativesH2O/DMF (9/1) 1.30×10^4 3.55×10^{-6} 78Thiophene aromatic amine derivativesTHF- 5.70×10^{-6} 893-(Benzyloxy)-2-(4- (di-p-tolylamino)phenyl)- 4H-chromen-4-oneWater 1.93×10^4 3.70×10^{-9} 9						
7Imidazole derivativesH2O/DMF (9/1) 1.30×10^4 3.55×10^{-6} 78Thiophene aromatic amine derivativesTHF- 5.70×10^{-6} 89 3 -(Benzyloxy)-2-(4- (di-p-tolylamino)phenyl)- 4H-chromen-4-oneWater 1.93×10^4 3.70×10^{-9} 9						
9 3-(Benzyloxy)-2-(4- (di-p-tolylamino)phenyl)- 4H-chromen-4-one Water 1.93 × 10 ⁴ 3.70 × 10 ⁻⁹ 9	7	Imidazole derivatives	H ₂ O/DMF	1.30×10^{4}	3.55×10^{-6}	7
8 Thiophene aromatic amine derivatives H_2 CN S = CN S = C			(9/1)			
9 3 -(Benzyloxy)-2-(4- (di-p-tolylamino)phenyl)- 4H-chromena-one	8	Thiophene aromatic	THF	-	5.70×10^{-6}	8
9 3 -(Benzyloxy)-2-(4- (di-p-tolylamino)phenyl)- $HI-chromen-4-one$ Water 1.93×10^4 3.70×10^{-9} 9		amine derivatives				
9 3 -(Benzyloxy)-2-(4- (di-p-tolylamino)phenyl)- 4H-chromen-4-one Water 1.93×10^4 3.70×10^{-9} 9		NH ₂				
9 3 -(Benzyloxy)-2-(4- (di-p-tolylamino)phenyl)- 4 H-chromen-4-one Water 1.93×10^4 3.70×10^{-9} 9						
9 3 -(Benzyloxy)-2-(4- (di-p-tolylamino)phenyl)- 4H-chromen-4-one						
9 3 -(Benzyloxy)-2-(4- (di-p-tolylamino)phenyl)- 4H-chromen-4-one						
9 3 -(Benzyloxy)-2-(4- (di-p-tolylamino)phenyl)- 4H-chromen-4-one		CN CN				
9 3 -(Benzyloxy)-2-(4- (di-p-tolylamino)phenyl)- 4 H-chromen-4-one Water 1.93×10^4 3.70×10^{-9} 9						
9 3 -(Benzyloxy)-2-(4- (di-p-tolylamino)phenyl)- 4 H-chromen-4-one Water 1.93×10^4 3.70×10^{-9} 9		✓́Ņ́́́́́́́				
9 3 -(Benzyloxy)-2-(4- (di-p-tolylamino)phenyl)- 4H-chromen-4-one						
9 3 -(Benzyloxy)-2-(4- (di-p-tolylamino)phenyl)- 4H-chromen-4-one						
9 3-(Belizyloxy)-2-(4- water 1.95 × 10 ⁻ 5.70 × 10 ⁻ 9 (di-p-tolylamino)phenyl)- 4H-chromen-4-one 4H-chromen	0	2 (Penzulovu) 2 (4	Watan	1.02 × 1.04	2.70×10^{-9}	0
4H-chromen-4-one	2	(di-n-tolylamino)nhenyl)-	vv alci	1.75 ^ 10	5.70 ~ 10 2	7
		4H-chromen-4-one				

	T				
10	[P(dimethylacrylamide <i>co</i> - Benzophenone acrylamide- <i>co</i> -glycidyl methacrylate]	Water	7.75 × 10 ⁴	5.60 × 10-7	10
11	9,14-diphenylpyreno [4,5-g]isoquinoline	MeCN	-	2.42×10^{-6}	11
12	7,10-bis(4-bromophenyl)- 8,9-bis(4-(2-(2-methoxyethoxy) ethoxy)- phenyl)-fluoranthene R Br Br	EtOH	5.60 × 10 ⁵	2.6 ppb	12
13	Fluorescein derivatives	EtOH	2.50 × 10 ⁵	1.10 × 10 ⁻⁷	13
14	1,3-Bis(benzo[d]thiazol-	H ₂ O/THF	1.54×10^{5}	29.1 ppb	14

	2-yl)benzene derivatives	(9/1)			
	s				
15		THE	1 15-105	501	15
15	1,3,5-tri(1H- benzo[d]imidazol-2- yl)benzene derivative	IHF	1.15x10 ³	50 ppb	15
	N-C ₁₂ H ₂₅				
	N=<				
	$C_{12}H_{25}$ \rightarrow N				
	$\bigwedge_{N} C_{12}H_{25}$				
16			5 7 104	1 4 5 1	1.6
16	tetraphenylethylene	THF THF/water	$\frac{5.7 \times 10^4}{5.7 \times 10^3}$	1.45 ppb 70 ppb	16
		11117 water	J./AIU	, o pho	1/
	H ₂ C-N				
18	AC-2	THF	2.5 x 10 ³	450 ppb	18
				11	_
	l Y				
	(T)				
19	2-NTPI-1	THF	0.47 x 10 ⁴	195ppb	This
1		1		1	WOLK

20	2-NTPI-2	THF	1.88 x 10 ⁴	446ppb	This work
21	2-NTPI -3	THF	2.19 x 10 ⁴	202ppb	This work
22	2-NTPI -4	THF	0.64 x 10 ⁴	297ppb	This work
23	2-NTPI -5	THF	0.34 x 10 ⁴	401ppb	This work

SI5 DFT analysis of luminophores with and without PA.

Fig. SI22 Optimized geometry of luminophores interacted with PA obtained from DFT using Gaussian 09 program.

Fig. SI23 Frontier molecular orbitals of 2-NTPI-2 and 2-NTPI-2+ PA obtained from DFT using Gaussian 09 program.

Fig. SI24 Frontier molecular orbitals of 2-NTPI-3 and 2-NTPI-3+ PA obtained from DFT using Gaussian 09 program.

Fig. SI25 Frontier molecular orbitals of 2-NTPI-4 and 2-NTPI-4+PA obtained from DFT using Gaussian 09 program.

Fig. SI26 Frontier molecular orbitals of 2-NTPI-5 and 2-NTPI-5+ PA obtained from DFT using Gaussian 09 program.

Fig. SI27 Frontier molecular orbitals of 2-NTPI-1 and different quenchers obtained from DFT.

Fig. SI28 Frontier molecular orbitals of 2-NTPI-2 and different quenchers obtained from DFT.

Fig. SI29 Frontier molecular orbitals of 2-NTPI-3 and different quenchers obtained from DFT.

Fig. SI30 Frontier molecular orbitals of 2-NTPI-4 and different quenchers obtained from DFT.

Fig. SI31 Frontier molecular orbitals of 2-NTPI-5 and different quenchers obtained from DFT.

SI6. Lifetime of the respective luminophores in presence and absence of PA.

Fig. SI32 Lifetime of all the luminophores in the absence and presence of PA.

The fluorescence lifetime of the luminophores were estimated by using the time-correlated single-photon counting technique and the decay curves are shown in **Fig. SI32** (supporting information). The decay curve was suited into the bi-exponential function and the average lifetime of the fluorophores is calculated by equation (1).⁵

$$I(t) = A_1 \exp\left(-\frac{t}{\tau_1}\right) + A_2 \exp\left(-\frac{t}{\tau_2}\right) + I_0$$
....(1)

In the above equation, I_0 and I(t) at time 0 and t, denotes the intensities, A_1 and A_2 represent as constants, τ_1 and τ_2 represent as constant the fast and slow decay. The average lifetime (τ_{avg}) value can be predictable from the subsequent double exponential equation (2):

Table ST2: Lifetime of the respective luminophores in nanosecond range

Compound	Lifetime without PA (s)	Lifetime with PA (s)
2-NTPI-1	4.77 x 10 ⁻⁹	3.98 x 10 ⁻⁹
2-NTPI-2	5.12 x 10 ⁻⁹	4.69 x 10 ⁻⁹
2-NTPI-3	5.14 x 10 ⁻⁹	4.76 x 10 ⁻⁹

2-NTPI-4	4.30 x 10 ⁻⁹	3.92 x 10 ⁻⁹
2-NTPI-5	5.05 x 10 ⁻⁹	4.90x 10 ⁻⁹

Table ST3: Computed Vertical Transitions and Their Oscillator Strengths and Configurations

Compound	State	f	$\lambda_{max} nm$	Energy	Configuration
				(eV)	
2-NTPI- 1	Triplet	0	485.34	2.5546	HOMO \rightarrow LUMO+3 (10.25%)
					HOMO-1 \rightarrow LUMO (41.01%)
					HOMO-1 \rightarrow LUMO+2(11.88%)
					HOMO →LUMO (50.56%)
	S1	0.222	348.98	3.5528	HOMO \rightarrow LUMO (68.84%)
	S2	0.1199	325.05	3.8143	HOMO \rightarrow LUMO (68.01%)
	S3	0.665	313.63	3.9533	HOMO → LUMO+2 (68.79 %)
2-NTPI -2	Triplet	0	485.87	2.551	HOMO-1 \rightarrow LUMO+1 (10.4%)
					HOMO-1→LUMO(41.2%)
					HOMO \rightarrow LUMO (50.6%)
	S1	0.223	349.31	3.549	HOMO \rightarrow LUMO (68.84%)
	S2	0.167	323.76	3.8295	HOMO \rightarrow LUMO+1 (68.18%)
2-NTPI -3	Triplet	0	485.1	2.5558	HOMO-1 → LUMO (38.96%)
					HOMO-1 \rightarrow LUMO+2 (16.00%)
					HOMO-1 \rightarrow LUMO+3 (13.02%)
					HOMO→LUMO(48.91%)
					HOMO \rightarrow LUMO+2 (13.32%)
	S1	0.015	358.01	3.463	HOMO \rightarrow LUMO+1 (70.23%)
	S2	0.164	354.10	3.5014	HOMO \rightarrow LUMO (67.97%)
2-NTPI -4	Triplet	0	485.11	2.555	HOMO-1 → LUMO (38.96%)
					HOMO-1 \rightarrow LUMO+2 (16.0%)
					HOMO-1 \rightarrow LUMO+3 (13.62%)
					HOMO→LUMO(48.91%)
					HOMO-1 \rightarrow LUMO+2 (13.3%)
1	1		1	1	

	S1	0.0154	358.01	3.463	HOMO \rightarrow LUMO+1 (70.23%)
	S2	0.164	354.10	3.5014	HOMO \rightarrow LUMO (67.97%)
2-NTPI -5	Triplet	0	484.25	2.5604	HOMO-1→LUMO+1 (36.49%)
					HOMO→LUMO+1(47.32%)
					HOMO-1 \rightarrow LUMO+2 (21.68%)
					HOMO-1 \rightarrow LUMO+3 (12.41%)
					HOMO \rightarrow LUMO+2 (16.7%)
	S1	0.004		3.0803	HOMO-1→ LUMO (50.13%)
	S2	0.0694		3.4691	HOMO \rightarrow LUMO+2 (47.07%)
	S3	0.2249		3.7847	HOMO-1→LUMO (50.73%)
					HOMO→LUMO+2 (47.07)

Table ST4: FMO orbitals of the luminophores

Luminophore	номо	LUMO	HOMO-1	LUMO+1
2-NTPI-1				
2-NTPI-2			and the second s	
2-NTPI-3				
2-NTPI-4	Yata Sa		Alter and a	
2-NTPI-5				

55

C	1.6073430	0.0436310	-0.0171230
С	1.3594600	-1.3229910	-0.0523110
С	-2.0510890	-0.2172130	-0.2232660
С	-2.8474020	-1.2058970	0.3328010
С	-2.6756700	0.8638950	-0.9117030
С	-4.2600870	-1.1559330	0.2473870
Н	-2.3708130	-2.0402270	0.8372240
С	-4.0445130	0.9367380	-1.0086630
Н	-2.0667790	1.6261590	-1.3827500
С	-4.8794830	-0.0572780	-0.4328440
Н	-4.5060310	1.7622090	-1.5443640
С	-0.5892480	-0.3757760	-0.1334180
С	0.0871520	2.0521080	0.0363420
С	0.5459410	2.9147860	-0.9635210
С	-0.6203810	2.5546090	1.1323630
С	0.2927850	4.2825020	-0.8636080
Н	1.0975370	2.5112860	-1.8055970
С	-0.8789960	3.9223020	1.2186780
Н	-0.9667760	1.8728060	1.9018100
С	-0.4220890	4.7884090	0.2237830
Н	0.6517540	4.9516910	-1.6395210
Н	-1.4337030	4.3101530	2.0675580
Н	-0.6212400	5.8532660	0.2959240
Ν	0.3441370	0.6465650	-0.0573300
Ν	0.0060610	-1.5526170	-0.1301870
С	-6.2961880	-0.0075520	-0.5130200
Н	-6.7622690	0.8265570	-1.0313220
С	-7.0684700	-0.9966790	0.0532980
Н	-8.1513330	-0.9480420	-0.0145940
С	-6.4574630	-2.0835610	0.7268240
Н	-7.0779780	-2.8577470	1.1685340
С	-5.0868900	-2.1609150	0.8211940
Н	-4.6149790	-2.9938190	1.3355320
С	2.8665860	0.8128890	0.0191170
С	3.8354080	0.6142360	-0.9798400
С	3.1354350	1.7410910	1.0392530
С	5.0373570	1.3193380	-0.9559970
Н	3.6380200	-0.1013980	-1.7716090
С	4.3354910	2.4506180	1.0569920
Н	3.8868990	-1.4551000	1.0482780
С	5.2906240	2.2422310	0.0607670
Н	5.7745020	1.1511340	-1.7357560
Н	4.5262910	3.1629060	1.8544520
Н	6.2261140	2.7936510	0.0773290
С	2.2934920	-2.4634940	-0.0061610
С	1.8873980	-3.6937740	-0.5520340
С	3.5629050	-2.3832080	0.5911910
С	2.7317880	-4.8008050	-0.5210970
Н	0.8994070	-3.7628260	-0.9937770
С	4.4065510	-3.4927330	0.6168880
С	3.9983860	-4.7052810	0.0590080
Н	2.4000780	-5.7413200	-0.9523150

Η	5.3833980	-3.4107920	1.0854510
Η	4.6577800	-5.5681640	0.0821140
Η	2.4019470	1.9022240	1.8223440

58

C	1.6382750	-0.1314220	-0.0271050
С	1.4335120	-1.5055980	-0.0484810
С	-2.0096480	-0.5088290	-0.2294790
С	-2.7735390	-1.5229720	0.3265690
С	-2.6694910	0.5515790	-0.9172730
С	-4.1870820	-1.5188490	0.2417380
Н	-2.2697790	-2.3414410	0.8305480
С	-4.0400590	0.5801640	-1.0132620
Н	-2.0858600	1.3332330	-1.3882180
С	-4.8421720	-0.4404320	-0.4374650
Н	-4.5284710	1.3903270	-1.5485480
С	-0.5434830	-0.6201790	-0.1395370
Ċ	0.0569700	1.8291170	0.0062100
С	0.4735760	2.6980620	-1.0050650
С	-0.6486120	2.3280500	1.1042430
Ċ	0.1797500	4.0572410	-0.9136700
H	1.0298340	2.3084710	-1.8508310
C	-0.9445820	3.6874140	1.1774370
Ĥ	-0.9631350	1.6499420	1.8906610
C	-0.5379960	4.5754900	0.1724420
H	0.5131240	4.7260600	-1.7026100
Н	-1.4956950	4.0649960	2.0346290
N	0.3573250	0.4311610	-0.0738350
N	0.0882210	-1.7782350	-0.1238800
C	-6.2597870	-0.4365720	-0.5168050
н	-6.7529510	0.3822800	-1.0344350
C	-6 9993280	-1 4506050	0.0491600
н	-8 0832460	-1 4370950	-0.0182060
C	-6.3530510	-2.5176490	0.7215360
н	-6 9479360	-3 3118710	1 1629620
C	-4 9806410	-2 5505520	0.8151730
н	-4 4815770	-3 3679780	1 3287120
C	2.8721390	0.6783520	-0.0019010
C	3.8435870	0.5020380	-1.0024000
C	3.1149060	1.6230850	1.0096970
C	5.0226040	1.2451960	-0.9889360
Н	3.6664830	-0.2261900	-1.7874780
C	4 2917410	2 3706160	1 0169280
н	3 9599800	-1 5463460	1 0578480
C	5 2496920	2 1843800	0.0189420
н	5 7621360	1 0937430	-1 7698900
н	4 4626340	3 0952140	1 8078280
н	6 1671990	2 7654400	0.0275290
C	2 4025520	-2 6158080	0.0106760
č	2.0366220	-3.8644760	-0.5215980
č	3.6668240	-2.4894170	0.6107240
č	2.9146540	-4.9444420	-0.4738880
-			0.1,20000

Η	1.0527910	-3.9695120	-0.9655440
С	4.5438740	-3.5720850	0.6546700
С	4.1751710	-4.8033280	0.1102900
Н	2.6137930	-5.8999460	-0.8946970
Η	5.5156510	-3.4543060	1.1261110
Η	4.8601710	-5.6455590	0.1470390
Н	2.3792610	1.7670490	1.7944330
С	-0.8847900	6.0432300	0.2473220
Η	-0.1602350	6.6543900	-0.2982410
Н	-1.8718350	6.2389320	-0.1897920
Η	-0.9142980	6.3948920	1.2828570

5	6
J	υ

sym	metry c1		
Ċ	1.6731730	-0.1915290	-0.0343020
С	1.5301160	-1.5717470	-0.0421880
С	-1.9571280	-0.7342350	-0.2427240
С	-2.6894510	-1.7439590	0.3605640
С	-2.6443500	0.2624650	-0.9956340
С	-4.1014890	-1.7946480	0.2616750
Η	-2.1634670	-2.5156970	0.9134140
С	-4.0137270	0.2376850	-1.1063480
Η	-2.0816250	1.0344240	-1.5075600
С	-4.7853290	-0.7781180	-0.4818670
Η	-4.5242250	0.9981090	-1.6913290
С	-0.4887450	-0.7833730	-0.1375730
С	-0.0015950	1.6882140	-0.0065440
С	0.4594000	2.5912080	-0.9718190
С	-0.8190570	2.1327990	1.0393070
С	0.1039080	3.9327610	-0.8936570
Η	1.0942610	2.2380480	-1.7759720
С	-1.1855800	3.4715230	1.1146440
Η	-1.1651590	1.4258670	1.7847940
С	-0.7241040	4.3813740	0.1488770
Η	0.4585570	4.6362670	-1.6387380
Η	-1.8212140	3.8197400	1.9212340
Ν	0.3641260	0.3121810	-0.0815780
Ν	0.1967960	-1.9070390	-0.1152410
С	-6.2011730	-0.8282660	-0.5751980
Η	-6.7165440	-0.0566370	-1.1411530
С	-6.9110620	-1.8358810	0.0380490
Η	-7.9938480	-1.8642820	-0.0402810
С	-6.2362260	-2.8417730	0.7735660
Η	-6.8085070	-3.6314350	1.2513200
С	-4.8647430	-2.8214660	0.8825630
Η	-4.3437540	-3.5919420	1.4444900
С	2.8682200	0.6750710	-0.0078170
С	3.8335720	0.5635150	-1.0233550
С	3.0776760	1.6113420	1.0190000
С	4.9747210	1.3637900	-1.0102870
Η	3.6824990	-0.1591000	-1.8190290
С	4.2161780	2.4162400	1.0255590
Η	4.0605410	-1.4834280	1.0519410

С	5.1680930	2.2951300	0.0117970
Η	5.7109060	1.2630330	-1.8023480
Η	4.3623490	3.1337210	1.8276040
Η	6.0556130	2.9207970	0.0195770
С	2.5493030	-2.6356190	0.0241810
С	2.2388930	-3.9045130	-0.4948900
С	3.8095140	-2.4431720	0.6148830
С	3.1677790	-4.9409020	-0.4436870
Η	1.2589300	-4.0604560	-0.9322820
С	4.7370480	-3.4826200	0.6627100
С	4.4235280	-4.7345290	0.1310850
Η	2.9103890	-5.9132400	-0.8543310
Η	5.7049290	-3.3148720	1.1267030
Η	5.1479390	-5.5428730	0.1704720
Η	2.3484460	1.7017660	1.8181170
С	-1.0954690	5.7640350	0.2277270
Ν	-1.3964040	6.8859110	0.2916150

58

aum	motrz ol		
Sym	1 2678620	1 0220190	0 1555120
C	-1.20/8030	1.0239180	0.1333130
C	-0.7000080	2.2700930	-0.0880800
C	2.3351800	0.3619230	-0.1411050
С	3.3699880	1.18/0530	0.2696300
С	2.6485030	-0.9166030	-0.6886570
С	4.7234770	0.7809850	0.1757560
Η	3.1317580	2.1695450	0.6642910
С	3.9532970	-1.3358000	-0.7897250
Η	1.8534340	-1.5569030	-1.0523060
С	5.0279510	-0.5132330	-0.3588430
Η	4.1776950	-2.3090950	-1.2181600
С	0.9596670	0.8817300	-0.0542380
С	-0.2585140	-1.2566360	0.5054310
С	-0.9910630	-2.1215410	-0.3116640
С	0.4036090	-1.7469880	1.6346980
С	-1.0535790	-3.4777640	0.0073190
Η	-1.5007040	-1.7391080	-1.1873470
С	0.3448730	-3.1071540	1.9369010
Η	0.9655850	-1.0631250	2.2613740
С	-0.3834650	-3.9766780	1.1280640
Η	0.8681080	-3.4873700	2.8082710
Ν	-0.1845200	0.1344200	0.1882570
Ν	0.6582690	2.1534220	-0.2199090
С	6.3854680	-0.9200640	-0.4462570
Н	6.6129210	-1.9016490	-0.8539890
С	7.3979310	-0.0878110	-0.0246570
Η	8.4326810	-0.4095950	-0.0968030
С	7.0983950	1.1923540	0.5041250
Н	7.9066190	1.8395290	0.8317400
С	5.7929780	1.6161910	0.6015270
Н	5.5598430	2.5979920	1.0047710
С	-2.6689810	0.5899610	0.3247640
С	-3.6031910	0.8336980	-0.6966690

С	-3.1038630	-0.0586860	1.4929660
С	-4.9329630	0.4420290	-0.5519440
Н	-3.2770170	1.3357290	-1.6019860
С	-4.4330990	-0.4557170	1.6324260
Н	-3.0891090	3.1477410	0.9896060
С	-5.3515810	-0.2066550	0.6113800
Н	-5.6411400	0.6383820	-1.3515300
Н	-4.7521150	-0.9557040	2.5422100
Η	-6.3867120	-0.5157540	0.7216640
С	-1.3416500	3.5965160	-0.1989520
С	-0.6762870	4.6095880	-0.9110310
С	-2.5715000	3.9020490	0.4080820
С	-1.2330360	5.8807430	-1.0285440
Η	0.2826670	4.3810470	-1.3628120
С	-3.1263980	5.1750040	0.2864780
С	-2.4633480	6.1693750	-0.4344330
Η	-0.7046730	6.6486520	-1.5867310
Η	-4.0767360	5.3921950	0.7660770
Η	-2.8977770	7.1606380	-0.5266600
Η	-2.3975890	-0.2447480	2.2959950
Η	-0.4285730	-5.0357350	1.3570310
С	-1.8827210	-4.4127900	-0.8340050
F	-3.0962500	-4.6346130	-0.2798560
F	-1.2871940	-5.6197520	-0.9653800
F	-2.0948950	-3.9258690	-2.0748360

56

С	1.5339530	-0.3602360	0.0803370
С	1.2050370	-1.6989120	-0.0793740
С	-2.1320210	-0.3737440	-0.1903380
С	-3.0020000	-1.3356650	0.2973780
С	-2.6689030	0.7871190	-0.8202370
С	-4.4065360	-1.1810810	0.2006500
Η	-2.5921100	-2.2299430	0.7557680
С	-4.0276970	0.9622550	-0.9267620
Н	-2.0005950	1.5287080	-1.2422300
С	-4.9374940	-0.0028940	-0.4187300
Η	-4.4230550	1.8468820	-1.4189690
С	-0.6854280	-0.6345500	-0.0958810
С	0.1316610	1.7172690	0.3156730
С	0.7062540	2.6468780	-0.5518330
С	-0.6105530	2.1492120	1.4206530
С	0.5340020	4.0176270	-0.3073160
Η	1.2832800	2.3118940	-1.4051440
С	-0.7891700	3.5132140	1.6500160
Η	-1.0449760	1.4136700	2.0886720
С	-0.2196830	4.4528760	0.7952330
Η	-1.3701680	3.8430000	2.5049910
Ν	0.3071530	0.3203950	0.0811880
Ν	-0.1600370	-1.8380400	-0.1923880
С	-6.3459520	0.1518840	-0.5097130
Н	-6.7452310	1.0455940	-0.9821990

С	-7.1931580	-0.8117860	-0.0107070
Η	-8.2688240	-0.6827580	-0.0861710
С	-6.6695590	-1.9771180	0.6024590
Η	-7.3491170	-2.7300000	0.9906810
С	-5.3093350	-2.1572410	0.7052940
Η	-4.9043610	-3.0504770	1.1732470
С	2.8340130	0.3301210	0.2005180
С	3.7800670	0.2228570	-0.8332880
С	3.1598410	1.0938530	1.3341850
С	5.0156080	0.8605600	-0.7347090
Η	3.5383700	-0.3671020	-1.7117290
С	4.3938590	1.7361580	1.4274680
Η	3.7202750	-2.0617530	0.9924550
С	5.3251240	1.6217390	0.3939810
Η	5.7344360	0.7678210	-1.5433810
Η	4.6298120	2.3219710	2.3109870
Η	6.2858920	2.1222780	0.4678760
С	2.0693630	-2.8928650	-0.1263700
С	1.5913770	-4.0517070	-0.7624740
С	3.3418960	-2.9316900	0.4680660
С	2.3698750	-5.2051320	-0.8187900
Η	0.6015460	-4.0297110	-1.2048140
С	4.1187050	-4.0875270	0.4078620
С	3.6395500	-5.2282860	-0.2380320
Η	1.9839650	-6.0891530	-1.3187320
Η	5.0986270	-4.0983020	0.8767790
Η	4.2466170	-6.1278580	-0.2827470
Η	2.4452840	1.1760960	2.1474140
Η	-0.3493520	5.5149740	0.9708030
С	1.1241850	4.9782500	-1.1949790
Ν	1.5983710	5.7612930	-1.9123680

2-NTPI-1 + PA

symmetry c1			
C	-4.7629230	-2.1946860	-1.0436750
С	-4.2794170	-1.5982420	0.1310920
С	-5.0586780	-1.6596460	1.2967380
С	-6.2989650	-2.2964720	1.2837740
С	-6.7733850	-2.8825580	0.1090910
С	-6.0020050	-2.8332930	-1.0530930
Η	-4.1600100	-2.1589780	-1.9455040
Η	-4.6822290	-1.2264810	2.2179050
Η	-6.8906180	-2.3413750	2.1930520
Н	-7.7382550	-3.3804940	0.1013060
Н	-6.3639030	-3.2919470	-1.9681460
С	-2.9550320	-0.9405660	0.1202240
С	-1.6931200	-1.4727980	-0.0389890
С	-1.2393900	-2.8667710	-0.1511780
С	-0.0927430	-3.1743030	-0.9029090
С	-1.9389740	-3.9043320	0.4890210
С	0.3378970	-4.4948030	-1.0127750
Н	0.4768010	-2.3943540	-1.3954160
С	-1.5043690	-5.2216050	0.3686210
Η	-2.8115590	-3.6785430	1.0915480

С	-0.3659520	-5.5218610	-0.3830060
Η	1.2289100	-4.7076280	-1.5947120
Η	-2.0505090	-6.0136890	0.8722330
Η	-0.0276330	-6.5500830	-0.4710250
С	-0.8444620	2.0769020	-0.0338480
С	0.2582930	2.2503680	-0.8576960
С	-1.3179420	3.1716800	0.7474070
С	0.9151160	3.5014910	-0.9439760
Н	0.6432410	1.4199280	-1.44005000
С	-0.6954540	4.3927050	0.6769130
Н	-2.1573570	3.0351660	1.4172260
С	0.4285070	4.6020570	-0.1668820
Н	-1.0547980	5.2180590	1.2850340
C	-1 4726780	0.7548100	0.0268100
C	-3 8789860	1 4059140	0 1454540
C	-4 5554780	1 7197500	1 3251470
C	-4 2432650	1 9896540	-1 0682410
C	-5 6077670	2 6342710	1 2861400
ч	4 2492900	1 2620830	2 2601240
Γ	5 2044400	2 0057740	1.0060580
ч	3 7050600	2.9037740	1 0736440
Γ	-5.7050000	2 2271170	-1.9/30440
с u	-3.9770370	3.22/11/0	2 2010000
п	-0.1333230	2.0044340	2.2010000
п u	-3.3/92010	3.3033400	-2.05/8540
п N	-0.7933220	5.9590100	0.0309370
IN N	-2./938/00	0.430/920	0.1089890
N	-0.81/0290	-0.4033660	-0.0932580
C	2.8848790	-0./100/20	-0.1354/40
C	5.9909840	-1.2393180	-0.9130080
C	5.2980480	-1.2918390	-0.4044200
C	5.5902380	-0.868/990	0.8341/90
C	4.5890090	-0.3808950	1.6656340
	3.2821180	-0.311/390	1.2094050
H	6.0842510	-1.6650810	-1.10/3860
H	4.8255000	-0.0526210	2.668/130
0	1.7404070	-0.5585620	-0.6352640
H	0.243/480	-0.4699040	-0.11/52/0
N	2.3045160	0.2062690	2.1562900
N	3.7621610	-1.7465350	-2.26/24/0
N	6.9558110	-0.9471520	1.3235870
0	2.7206560	0.8199270	3.1433640
0	4.6///810	-1.6226670	-3.0860410
0	7.8167700	-1.3871840	0.5559100
0	7.1785180	-0.5686750	2.4770170
0	2.6885680	-2.2973790	-2.5167780
0	1.1033330	-0.0026460	1.9491070
С	1.0898350	5.8539290	-0.2605400
Η	0.7225370	6.6875710	0.3317040
С	2 1821390	6.0093500	-1.0845480
	2.1021570		
Η	2.6824130	6.9710790	-1.1468520
H C	2.6824130 2.0451880	6.9710790 3.6943470	-1.1468520 -1.7849170
H C H	2.6824130 2.0451880 2.4131160	6.9710790 3.6943470 2.8550890	-1.1468520 -1.7849170 -2.3681860
H C H C	2.6824130 2.0451880 2.4131160 2.6645760	6.9710790 3.6943470 2.8550890 4.9209150	-1.1468520 -1.7849170 -2.3681860 -1.8527250

2-NTPI-2 + PA

77

Ċ	-4.3024180	-2.7862360	-1.0340520
С	-3.9100170	-2.0976440	0.1245240
С	-4.7024970	-2.2000390	1.2782980
С	-5.8674450	-2.9659850	1.2690680
С	-6.2516740	-3.6432780	0.1106460
С	-5.4653360	-3.5546790	-1.0391740
Н	-3.6885920	-2.7185840	-1.9266020
Н	-4.3941150	-1.6958100	2.1882450
Н	-6.4697030	-3.0404690	2.1694210
Н	-7.1574340	-4.2421140	0.1059640
Н	-5.7567370	-4.0832120	-1.9416390
C	-2 6639470	-1 3028570	0 1108780
C	-1 3534110	-1 6999100	-0.0516470
C	-0 7541510	-3 0377920	-0 1654800
C	0.4161280	-3 2209000	-0.9214080
C	-1 3345980	-4 1436680	0.4793980
C	0.9866370	-4.4873370	-1 0312340
н	0.8963920	-2 3846290	-1.0512540
C	-0 7604400	-5 4064360	0 3591070
с u	-0.700++00	4 0122260	1.0855170
II C	-2.2238770	-4.0123200	0.3071740
с u	1 8031000	-5.5855010	-0.39/1/40
П Ц	1.0951090	-4.0030170	-1.0103830
п	-1.2135230	-0.2310000	0.8000340
п	0.84/0330	-0.3091440	-0.4631060
C	-0.8/84210	1.9180770	-0.0329390
C	0.1998650	2.2065590	-0.8569590
C	-1.4589890	2.9554130	0.7543000
C	0.7273270	3.5178960	-0.9366860
Н	0.6659230	1.4224510	-1.4441690
C	-0.9626090	4.2332360	0.6903630
Н	-2.2802160	2.7315130	1.4230220
С	0.1336060	4.5594980	-0.1527960
Η	-1.4026910	5.0149030	1.3031800
С	-1.3669140	0.5380120	0.0235750
С	-3.8278010	0.9344160	0.1458360
С	-4.5210180	1.1992270	1.3265600
С	-4.2708840	1.4621030	-1.0667560
С	-5.6619270	1.9984620	1.2873530
Η	-4.1592910	0.7980770	2.2674740
С	-5.4112000	2.2616400	-1.0901080
Н	-3.7222450	1.2528140	-1.9791740
С	-6.1282860	2.5398090	0.0817520
Н	-6.1954010	2.2074780	2.2102320
Η	-5.7487000	2.6760810	-2.0358540
Ν	-2.6496050	0.1033850	0.1663810
Ν	-0.5940560	-0.5448670	-0.1027960
С	3.1195260	-0.4955020	-0.1421620
С	4.2750000	-0.9138210	-0.9265290
С	5.5740570	-0.8695010	-0.4694840
С	5.8250280	-0.4521470	0.8395690
С	4.7837600	-0.0646720	1.6747960
С	3.4774580	-0.0929530	1.2126000

Η	6.3910500	-1.1630130	-1.1153670
Η	4.9887100	0.2610540	2.6856270
0	1.9679450	-0.4318570	-0.6441240
Н	0.4673650	-0.5016420	-0.1260200
Ν	2.4571800	0.3253270	2.1638860
Ν	4.0887490	-1.4080870	-2.2910290
Ν	7.1902190	-0.4298380	1.3354390
0	2.8187440	0.9485550	3.1664100
0	4.9942690	-1.1899150	-3.1013570
0	8.0872070	-0.7843330	0.5646720
0	7.3768820	-0.0571900	2.4971640
0	3.0657340	-2.0403680	-2.5596000
0	1.2772130	0.0274020	1.9443190
С	0.6659110	5.8719260	-0.2393760
Η	0.2175030	6.6609890	0.3580870
С	1.7360020	6.1411760	-1.0631750
Η	2.1371320	7.1486300	-1.1200120
С	1.8313770	3.8282180	-1.7770810
Η	2.2813730	3.0333710	-2.3650190
С	2.3243960	5.1111570	-1.8380270
Η	3.1702510	5.3388970	-2.4792520
С	-7.3809790	3.3806780	0.0407380
Η	-8.2564980	2.7657270	-0.2005050
Η	-7.5734930	3.8598760	1.0043810
Н	-7.3131380	4.1621180	-0.7214400

2-NTPI-3 + PA

75

Ċ	-3.9183060	-2.8974720	-1.4336670
С	-3.2666750	-2.6490180	-0.2167370
С	-3.6236720	-3.4052680	0.9108480
С	-4.6106600	-4.3869000	0.8229150
С	-5.2548140	-4.6232220	-0.3927850
С	-4.9063790	-3.8781750	-1.5202540
Η	-3.6408580	-2.3245220	-2.3131260
Η	-3.1158080	-3.2258060	1.8544270
Н	-4.8740980	-4.9676240	1.7018150
Η	-6.0225890	-5.3879480	-0.4618890
Η	-5.4007400	-4.0624900	-2.4692350
С	-2.2148330	-1.6082630	-0.1307090
С	-0.8506680	-1.6605400	-0.3343630
С	0.0118560	-2.7970610	-0.7018640
С	1.0987970	-2.5807470	-1.5679040
С	-0.2154050	-4.0953370	-0.2194280
С	1.9322250	-3.6343110	-1.9381130
Η	1.2773370	-1.5842980	-1.9594380
С	0.6173790	-5.1471640	-0.5968730
Η	-1.0358970	-4.2801750	0.4638860
С	1.6940900	-4.9224270	-1.4555980
Η	2.7642110	-3.4496450	-2.6114750
Η	0.4303920	-6.1436450	-0.2079390
Η	2.3438240	-5.7431590	-1.7441030
С	-1.1664700	1.8994520	0.2228810

С	-0.2200480	2.5693290	-0.5363950
С	-1.9210080	2.6234120	1.1923220
С	0.0150790	3.9556700	-0.3652600
Н	0.3690460	2.0296600	-1.2689600
С	-1.7243490	3.9719140	1.3637580
Н	-2.6406370	2.1030110	1.8141310
С	-0.7608220	4.6808940	0.5962120
Н	-2.3010960	4.5125350	2.1093570
C	-1.3250610	0.4489460	0.0339340
Ċ	-3.8260480	0.2977310	0.1821790
Ċ	-4.6681200	-0.0544010	1.2411960
Č	-4.2664290	1.1789780	-0.8105420
Č	-5.9529070	0.4734580	1.3083430
H	-4.3144100	-0.7338770	2.0072630
C	-5.5462280	1.7169160	-0.7410190
H	-3.6043120	1.4407090	-1.6280870
C	-6.3986030	1.3642490	0.3183050
H	-6.6120230	0.2054850	2.1264920
Н	-5.8932170	2.4030200	-1.5055190
N	-2.5083810	-0.2539870	0.1006220
N	-0.3277890	-0.3870840	-0.2166490
C	3.2560150	0.1065800	0.0492930
Č	4.3646050	0.8010710	-0.5342020
Č	5.6834470	0.4976360	-0.2575540
Č	5.9631840	-0.5678800	0.5945000
Ċ	4.9426840	-1.2846970	1.2006700
Ċ	3.6196490	-0.9390070	0.9551320
H	6.4837650	1.0738420	-0.7027790
Н	5.1658610	-2.0990190	1.8768240
0	2.0622910	0.4966750	-0.2767220
Н	1.1672510	-0.0140230	-0.0597480
Ν	2.6112100	-1.6700010	1.7270090
Ν	4.1345670	1.9112110	-1.4750830
Ν	7.3554530	-0.9236490	0.8688270
0	2.9409880	-2.7407630	2.2317010
0	4.9295500	2.8495140	-1.4230710
0	8.2298480	-0.2612190	0.3102260
0	7.5623380	-1.8620300	1.6376220
0	3.1990890	1.8260840	-2.2669200
0	1.5026430	-1.1484840	1.8566200
С	-0.5296420	6.0721490	0.7557360
Н	-1.1193020	6.6225150	1.4840340
С	0.4294860	6.7135580	0.0041040
Н	0.5997440	7.7780380	0.1355350
С	1.0041990	4.6440980	-1.1207340
Н	1.6089550	4.0833570	-1.8284740
С	1.2054470	5.9932080	-0.9376910
Н	1.9665420	6.5110920	-1.5132810
С	-7.7218780	1.9126750	0.3892890
N	-8.7951480	2.3570160	0.4474320

2-NTPI-4 + **PA**

С	-2.5346220	-3.7915090	-1.1227590
С	-2.1836350	-3.1698430	0.0860950
С	-2.5595060	-3.7788040	1.2940590
С	-3.2779110	-4.9739800	1.2920530
С	-3.6254860	-5.5805280	0.0839520
С	-3.2489460	-4.9887120	-1.1227730
Η	-2.2398110	-3.3314360	-2.0605550
Н	-2.2667610	-3.3263190	2.2361320
Н	-3.5580110	-5.4354630	2.2342660
Н	-4.1827580	-6.5124870	0.0832960
Н	-3.5126190	-5.4577450	-2.0658610
С	-1.4068600	-1.9119670	0.0605790
Ċ	-0.1240910	-1.6488780	-0.3802940
C	0.9095480	-2.5743610	-0.8776540
C	1.8169110	-2.1457500	-1.8622380
C	1 0199750	-3 8841330	-0.3809680
C	2 8059360	-3 0063720	-2 3349610
н	1 7547540	-1 1382230	-2 2572160
C	2 0056420	-4 7427320	-0.8632780
н	0 3424160	-4 2248550	0.3940530
C	2 9025230	-4 3083500	-1 8412810
н	3 4981220	-2 6522580	-3 0929490
н	2 0796870	-5 7503590	-0 4648940
н	3 6727000	-4 9783690	-0.4040940
C	-1 1376590	1 7412290	0 3646530
C	-0.5243670	2 5910580	-0.5423100
C	1 8535040	2.3910380	1 4641410
C	-1.85555040	2.2972710	0.4032340
с н	-0.0031270	2 1785040	1 3701360
Γ	1.0487140	2.1783040	-1.5791300
с u	-1.946/140	1 6422780	2 1084540
Γ	1 2272550	1.0422780	2.1984340
с н	-1.3372330	4.3498780	2.4654640
Γ	-2.4893170	-4.0707940	0.1762620
C	-0.3837200	0.2312410	0.1703030
C	-3.3207330	-0.4339370	0.7333040
C	-3.7789020	-0.0994210	2.0313970
C	-4.1919200	0.0400080	-0.2179980
с u	-3.1210210	-0.4630020	2.3033330
п	-5.0657090	-1.0383000	2.8023700
с u	-3.3311310	0.2013110	1 2105500
Γ	-5.8285800	0.2432400	-1.2193300
с u	-3.9994/00	-0.000/340	1.3936960
п N	-3.4603360	-0.0933330	0.4222020
IN N	-1.9442030	-0.0007290	0.4222920
IN C	0.10/3630	-0.2693340	-0.2930390
C	3.4/88800	0.3048870	-0.1403900
C	4.00/0830	0.7338030	-0.9230840
C	5.7570470	0.309/130	-0.4333100
C	0.0819660	0.02/8910	0.805/4/0
C	4.9/49290	-0.1855/30	1.0/42090
U H	3./063010	0.1034920	1.18/9190
п	0.8008140	0.080/120	-1.0552900
Н	5.0930180	-0.555120	2.0846910
U	2.3346540	0.8583480	-0.6885350
Н	1.4259850	0.3852470	-0.3710900

Ν	2.6078160	-0.0305210	2.1507910
Ν	4.5754660	1.1440950	-2.3346050
Ν	7.4193170	-0.2493280	1.3873770
0	2.7650310	-0.8111010	3.0891020
0	5.4300710	1.9334330	-2.7363490
0	8.3741720	-0.0470860	0.6367000
0	7.5055980	-0.6676760	2.5418970
0	3.6934030	0.6472890	-3.0292480
0	1.6113400	0.6726930	1.9867160
С	-1.4200430	5.9606530	0.8289860
Η	-1.9762650	6.3769330	1.6646080
С	-0.8050260	6.7888210	-0.0828670
Η	-0.8740620	7.8667690	0.0287990
С	0.0203330	4.8806970	-1.3273730
Η	0.5790660	4.4592340	-2.1584080
С	-0.0779990	6.2440360	-1.1701810
Η	0.4037680	6.9093980	-1.8801790
Η	-7.0455050	0.1537280	1.6327520
С	-6.4779500	0.8288260	-0.9199110
F	-6.6356760	2.1616260	-0.7616760
F	-7.7050420	0.2729410	-0.8173730
F	-6.0386680	0.6245540	-2.1792040

2-NTPI-5 +PA

75

sym	metry c1		
С	3.8427490	-3.0567200	1.2954410
С	3.3313950	-2.6596100	0.0507580
С	3.8156610	-3.2819470	-1.1109750
С	4.7946880	-4.2717660	-1.0295580
С	5.2997700	-4.6552580	0.2140880
С	4.8201710	-4.0483940	1.3757000
Η	3.4658650	-2.5873450	2.1987860
Η	3.4057490	-3.0018440	-2.0770440
Η	5.1566600	-4.7483520	-1.9356680
Η	6.0601040	-5.4278940	0.2776570
Η	5.2060140	-4.3466920	2.3457750
С	2.2827270	-1.6167240	-0.0197970
С	0.9337770	-1.6596620	0.2677730
С	0.0987840	-2.7896510	0.7089520
С	-0.9553340	-2.5594240	1.6106220
С	0.3248620	-4.0989520	0.2558850
С	-1.7597770	-3.6115370	2.0442070
Η	-1.1316220	-1.5536040	1.9786800
С	-0.4789070	-5.1485220	0.6964300
Η	1.1206620	-4.2923740	-0.4544730
С	-1.5238480	-4.9104810	1.5905270
Η	-2.5669420	-3.4169890	2.7444350
Η	-0.2949250	-6.1540040	0.3298600
Η	-2.1510730	-5.7298030	1.9286070
С	1.2123400	1.8759040	-0.4418480
С	0.2999580	2.5636540	0.3432840
С	1.9239170	2.5790070	-1.4580070
С	0.0568250	3.9457180	0.1523310

Η	-0.2546810	2.0418650	1.1144430
С	1.7200950	3.9237960	-1.6491480
Η	2.6159110	2.0461010	-2.0997330
С	0.7903400	4.6498950	-0.8567120
Н	2.2645840	4.4481890	-2.4298030
С	1.3801650	0.4311240	-0.2235910
С	3.8713530	0.2745270	-0.4912940
С	4.6148270	0.0088560	-1.6443530
С	4.4014440	1.0660640	0.5261320
С	5.8978210	0.5396970	-1.7797570
Н	4.1833230	-0.6008850	-2.4295780
С	5.6887560	1.6042300	0.3802870
Н	3.8217050	1.2670680	1.4194110
С	6.4397400	1.3374860	-0.7761580
Н	6.4740950	0.3332120	-2.6754640
Ν	2.5569950	-0.2762970	-0.3368250
Ν	0.4015620	-0.3933910	0.1247330
С	-3.1850780	0.0756820	0.0025710
С	-4.2734260	0.7865000	0.6057660
С	-5.6009600	0.4753040	0.3854400
С	-5.9105520	-0.6137860	-0.4255630
С	-4.9117950	-1.3473030	-1.0479090
С	-3.5811770	-0.9947900	-0.8604780
Η	-6.3851520	1.0641990	0.8425470
Η	-5.1585210	-2.1804880	-1.6921430
0	-1.9812690	0.4717860	0.2758040
Η	-1.0837060	-0.0365500	0.0363600
Ν	-2.6014560	-1.7471160	-1.6483000
Ν	-4.0116210	1.9244230	1.5041990
Ν	-7.3112180	-0.9766900	-0.6394360
0	-2.9455720	-2.8360000	-2.1025230
0	-4.8128280	2.8578690	1.4565710
0	-8.1656940	-0.2983450	-0.0690530
0	-7.5451950	-1.9366030	-1.3733060
0	-3.0447530	1.8666740	2.2598490
0	-1.5025110	-1.2252330	-1.8423070
С	0.5521900	6.0375020	-1.0357880
Η	1.1103380	6.5720980	-1.7998010
С	-0.3741970	6.6951520	-0.2576500
Η	-0.5500210	7.7567880	-0.4039090
С	-0.8989180	4.6506340	0.9351000
Η	-1.4712340	4.1059530	1.6812970
С	-1.1086140	5.9954790	0.7318350
H	-1.8438620	6.5260940	1.3289840
H	7.4350110	1.7558010	-0.8767920
С	6.2418480	2.4209640	1.4222430
Ν	6.6961050	3.0808400	2.2651390

References:

1. G. He, H. Peng, T. Liu, M. Yang, Y. Zhang and Y. Fang, *J. Mater. Chem.*, 2009, **19**, 7347-7353.

D. Li, J. Liu, R. T. K. Kwok, Z. Liang, B. Z. Tang and J. Yu, *Chem. Commun.*, 2012,
 48, 7167-7169.

Y. P. Zhuang, J. Y. Yao, Z. Y. Zhuang, C. J. Ni, H. M. Yao, D. L. Su, J. Zhou and Z.
 J. Zhao, *Dyes Pigm.*, 2020, **174**, 108041.

4. Y. J. Li, Y. N. Han, M. H. Chen, Y. Q. Feng and B. Zhang, *RSC Adv.*, 2019, **9**, 30937.

P. Lu, J. W. Y. Lam, J. Liu, C. K. W. Jim, W. Yuan, N. Xie, Y. Zhong, Q. Hu, K. S.
 Wong, K. K. L. Cheukand B. Z. Tang, *Macromol. Rapid Commun.*, 2010, **31**, 834-839.

D. B. Wu, W. J. Gong, H. M. Yao, L. M. Huang, Z. H. Lin and Q. D. Ling, *Dyes Pigm.*, 2020, **172**, 107829.

7. S. S. Zhang, H. C. Zhu, J. Y. Huang, L. Kong, Y. P. Tian and J. X. Yang, *Chemistry Select*, 2019, **4**, 7380.

X. Lu, G. C. Zhang, D. D. Li, X. H. Tian, W. Ma, S. L. Li, Q. Zhang, H. P. Zhou, J.
 Y. Wu and Y. P, *Dyes Pigm.*, 2019, **170**, 107641.

9. Z. J. Luo, B. Liu, S. F. Si, Y. J. Lin, C. S. Luo, C. J. Pan, C. Zhao and L. Wang, *Dyes Pigm.*, 2017, **143**, 463.

10. M. Gupta and H. Lee, ACS Appl. Mater. Interfaces, 2018, 10, 41717.

11. X. L. Yu, J. Q. Wan, S. Chen, M. Li, J. K. Gao, L. Yang, H. S. Wang, D. G. Chen, Z.Q. Pan and J. B. Li, *Talanta*, 2017, **174**, 462.

12. S. Kasthuri, S. Kumar, S. Raviteja, B. Ramakrishna, S. Maji, N. Veeraiah and N. Venkatramaiah, *Appl. Surf. Sci.*, 2019, **481**, 1018.

13. Z.-H. Fu, Y. W. Wang and Y. Peng, Chem. Commun., 2017, 53, 10524.

14. Si-Hong Chen,a Kai Jiang, Jian-Yun Lin, Kai Yang, Xi-Ying Cao, Xiao-Yan Luo and Zhao-Yang Wang, *J. Mater. Chem. C.*, 2020, **8**, 8257-8267

15. Jin-Feng Xiong, Jian-Xiao Li, Guang-Zhen Mo, Jing-Pei Huo, Jin-Yan Liu, Xiao-Yun Chen, and Zhao-Yang Wang, *J. Org. Chem.* 2014, **79**, 11619–11630.

16. H.-T. Feng and Y.-S. Zheng, *Chem. Eur. J.*, 2013, **20**, 195-201.

17. T. Liu, L. Ding, G. He, Y. Yang, W. Wang and Y. Fang, *ACS Appl. Mater. Interfaces*, 2011, 3, 1245-1253.

 A. B. Kajjam, K. Singh, R. V. Varun Tej and S. Vaidyanathan, Mater. Adv., 2021, 2, 5236-5247