Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2023

Tailor-made isostructural copper(II) and nickel(II) complexes with a newly

designed (N,N)-donor scaffold for functional mimics of alkaline phosphatase

Subhankar Kundu,^{a,§} Subhajit Saha,^{a,§} Subhra Jyoti Panda,^b Chandra Shekhar Purohit,^b and Bhaskar Biswas^{a,*}

Supporting Information

Contents

A.	Figure	s
	i.	¹ H NMR spectrum of H ₂ L
	ii.	13 C NMR spectrum of H ₂ L
	iii. iv.	FT-IR spectra of H_2L ,1 and 2
	v. vi. vii. viii.	HOMO LUMO of the complex 1 and complex 2
	ix. x. xii. xii. xiii. xiv. xv. xv. xvi.	UV-Vis spectra of the Cu(II) complex at 0 min and after 7 days
B.	Tables	complex 1 and complex 2 using the difference of absorbance upon pH variationS15
	i. ii. iii.	Selected bond lengths (Å) and bond angles (°) for 1
C.	Coordi	nates of all the optimized geometries

Fig. S1. ¹H NMR spectrum of H₂Lin DMSO-d6.

Fig. S2. ¹³C NMR spectrum of H₂Lin CDCl₃

Fig. S3. FT-IR spectra of H_2L , 1 and 2

Fig.S4. UV-Vis spectra of H_2L and metal complexes in aq. DMF medium

	Complex 1	Complex 2
HOMO/SOMO	Facure=130 77kcal/mol	E _{HOMO=} -127.45kcal/moL
	L _{SOMO} -150.77Kcal/mol	nomo

HOMO -1		
	номо-1 E _{HOMO-1} =-131.38kcal/moL	номо-1 E _{HOMO-1} =-130.29kcal/moL
НОМО-2	a atom	And And
	номо-2 E _{HOMO-2} =-131.66kcal/moL	номо-2 E _{HOMO-2} =-139.24kcal/moL
LUMO	• * •	30 A 23
	E _{LUMO} =-48.37 kcal/moL	E _{LUMO} =-41.6/kcal/moL
	Eumo+1=-39.55kcal/moL	LUMO+1 E
LUMO+2		ELUMO+150.02Kcal/mol
	E _{LUMO+2} =-38.96kcal/moL	LUMO+2 ELUMO+2=-27.35kcal/moL

Fig.S5. HOMO LUMO of the complex 1 and complex 2

Fig. S6. Plot of rate vs [pNPP] for the Cu(II) complex-mediated catalytic hydrolysis of pNPP.

Fig. S7. Plot of rate vs [pNPP] for the Ni(II) complex-mediated catalytic hydrolysisofpNPP.

Fig S8.Spectrophotometric titration of H₂LwithpNPP in 1:10 in aq. DMF

Fig. S9. UV-Vis spectra of the Cu(II) complex at 0 min and after 7 days in aq. DMF medium

Fig. S10. UV-Vis spectra of the Ni(II) complex at 0 min and after 7 days in aq. DMF medium

Fig. S11. ESI-Ms spectrum of the copper(II)-Schiff base complex in aq. methanol

Fig. S12. ESI-Ms spectrum of the nickel(II)-Schiff base complex in aqueous methanol

Fig. S13. ESI-Ms spectrum of the copper(II)-Schiff base complex in presence of pNPP in aq. methanol

Fig. S14. ESI-Ms spectrum of the nickel(II)-Schiff base complex in presence of pNPP in aq. Methanol

Fig. S15. ¹H NMR spectrum of the Na-salt of H₂L in CdCl₃.

Fig. S16 Mulliken charge distribution on the oxygen and hydrogen atoms of the computationally optimized (a) ligand H_2L (b) complex1 (c) complex2 (d) complex 1+pNPP adduct (e) complex 2+pNPP adduct.

Fig.S17 Determination of the pka value of the ligand-OH in the Na salt of H_2L , complex1 and complex 2 using the difference of absorbance upon pH variation.

Bond length (Å)	XRD	DFT	Bond length	XRD	DFT
			(Å)		
Cu1-N1	1.950(4)	1.972	Cu3 -N9	1.987(3)	1.987
Cu1-N2	1.973(4)	1.969	Cu3 -N10	2.000(3)	2.000
Cu1-N3	1.970(4)	2.022	Cu3 -N11	1.966(3)	1.966
Cu1-N4	1.999(4)	2.017	Cu3 -N12	1.958(3)	1.958
Cu2 -N1AA	1.993(4)	2.022	Cu4 -N14	1.999(3)	2.023
Cu2 -N0AA	1.978(4)	2.017	Cu4 -N16	1.984(3)	2.017
Cu2 -N7	1.958(3)	1.972	Cu4 -N13	1.962(3)	1.969
Cu2 -N8	1.948(3)	1.969	Cu4 -N15	1.958(3)	1.972

Table S1. Selected bond lengths (Å) and bond angles (°) for 1 $\,$

Bond angles (°)	XRD	DFT	Bond angles (°)	XRD	DFT
N1-Cu1 -N4	82.63(19)	82.780	N1A -Cu2-N0AA	91.44(14)	91.571
N1 -Cu1 -N2	103.5(2)	102.722	Cu2 -N1AA -C17	111.6(3)	111.439
N1 -Cu1 -N3	173.5(2)	171.786	N1AA-Cu2 -N7	173.14(14)	171.786
N3 -Cu1 -N4	91.34(15)	91.571	Cu2 -N1AA -C16	128.5(3)	128.124
N2 -Cu1 -N3	82.68(19)	82.897	N1AA -Cu2 -N8	82.92(14)	82.897
N2 -Cu1 -N4	173.34(17)	174.469	N0AA -Cu2 -N7	83.23(14)	82.780
Cu1 -N1 -C4	111.4(3)	111.488	Cu2 -N0AA -C14	126.6(3)	127.142
Cu1 -N1 -C1	141.2(5)	141.652	N0AA-Cu2-N8	174.28(15)	174.468
Cu1-N2-C10	110.7(3)	111.401	Cu2-N0AA-C26	112.2(3)	111.893
Cu1-N2-C13	142.5(5)	141.734	N7 -Cu2 -N8	102.47(15)	102.722
Cu1-N3-C8	126.9(3)	128.123	Cu2 -N7 -C25	110.6(3)	111.488
Cu1-N3-C9	112.4(3)	111.439	Cu2 -N7 -C22	142.4(3)	141.652
Cu1-N4-C0AA	127.9(3)	127.412	Cu2 -N8 -C21	143.1(3)	141.734
Cu1-N4-C1AA	111.4(3)	111.893	Cu2 -N8 -C18	111.6(3)	111.401
N10 -Cu3 -N11	170.61(13)	170.61	Cu3 -N12 -C34	141.8(3)	141.9
N9 -Cu3 -N10	91.71(13)	91.81	N14 -Cu4 -N15	166.81(13)	171.786
N10 -Cu3 -N12	82.96(13)	82.95	N13 -Cu4 -N16	173.52(13)	174.46
N11 -Cu3 -N12	103.22(14)	103.21	N14 -Cu4 -N16	91.55(13)	91.571

N9 -Cu3 -N12	173.47(13)	173.50	N15 -Cu4 -N16	83.00(13)	82.780
N9 -Cu3 -N11	82.55(14)	82.55	N13 -Cu4 -N14	83.03(13)	82.897
Cu3 -N9 -C27	127.4(2)	127.40	N13 -Cu4 -N15	103.05(13)	102.722
Cu3 -N9 -C39	112.3(3)	112.35	Cu4 -N13 -C45	143.3(3)	141.734
Cu3 -N10 -C30	111.6(2)	111.65	Cu4 -N13 -C48	110.0(2)	111.401
Cu3 -N10 -C29	128.1(2)	128.21	Cu4 -N14 -C49	111.1(3)	111.439
Cu3 -N11 -C35	142.8(3)	143.1	Cu4 -N14 -C50	128.7(3)	128.123
Cu3 -N11 -C38	111.1(3)	111.2	Cu4 -N15 -C44	142.2(3)	141.652
Cu3 -N12 -C31	111.1(2)	111.2	Cu4 -N15-C41	110.9(3)	111.488
Cu4 -N16 -C52	126.8(2)	127.142	Cu4 -N16-C40	111.9(3)	111.893

Table S2. Selected bond lengths (Å) and bond angles (°) for 2

Bond length	XRD	DFT	Bond length	XRD	DFT
(Å)			(Å)		
Ni2 - N3	1.891(2)	1.890	Ni1 -N27	1.913(2)	1.931
Ni2 - N9	1.9030(19)	1.902	Ni1 -N31	1.897(2)	1.922
Ni2 -N13	1.904(2)	1.904	Ni1 -N21	1.895(2)	1.897
Ni2 -N16	1.8944(19)	1.893	Ni1 -N34	1.888(2)	1.899

Bond angles	XRD	DFT	Bond angles (°)	XRD	DFT
(°)					
N3 -Ni2-N9	83.99(9)	84.004	N27-Ni1-N34	171.80(8)	172.11
N3 -Ni2-N13	175.35(9)	175.33	Ni1 -N34 -C35	112.79(17)	112.66
N3 -Ni2 -N16	98.25(9)	98.265	N31-Ni1-N34	83.79(9)	98.52
N9 -Ni2-N13	93.62(8)	93.596	Ni1-N34 -C38	140.60(18)	140.33
N9 -Ni2-N16	177.67(9)	177.636	N21-Ni1-N27	83.72(9)	83.92
Ni1-N21-C25	141.62(19)	140.67	N21-Ni1-N31	177.69(9)	175.77
Ni1-N21-C22	112.13(15)	112.45	Ni2 -N3-C7	141.35(19)	141.336
Ni1-N27-C26	113.44(17)	112.74	Ni2 -N3-C4	112.38(17)	112.36
Ni1 -N27-C28	128.26(17)	128.07	Ni2 -N9-C8	113.95(16)	113.93
Ni1-N31-C30	126.37(17)	126.29	Ni2 -N9-C10	127.76(17)	127.797
N13-Ni2-N16	84.10(8)	83.93	Ni2 -N13-C12	128.03(17)	128.033

N21-Ni1-N34	98.49(9)	98.52	Ni2 -N13-C14	113.33(17)	113.286
Ni1 -N31-C32	114.38(16)	113.51	Ni2 -N16-C20	141.64(19)	141.629
N27 -Ni1-N31	93.97(9)	94.24	Ni2 -N16-C17	111.76(15)	111.771

Table S3. NBO charge distribution of the key intermediates of complex 1 and complex 2

Complex 1	NBO(q)	Complex 2	NBO(q)
Cu1	1.598	Ni1	1.393
P 34	2.161	P37	2.213
O52	-0.927	O34	-0.801
H53	0.462	H35	0.476
H54	0.438	H36	0.433
O36	-1.070	O39	-1.024
O37	-0.887	O40	-1.010
035	-1.001	O38	-1.007
051	-0.805	O54	-0.692

Coordinates of all the optimized geometries

Complex 1

Cu	5.711	13.043	6.366
Ν	4.315	12.152	7.416
Ν	6.231	11.165	5.917
Ν	5.614	14.898	6.984
Ν	7.105	13.774	5.157
0	9.103	11.903	6.015
Н	8.576	11.98	6.638
С	4.553	10.796	7.462
С	5.587	10.322	6.643
Н	5.804	9.418	6.625
С	5.035	15.682	7.919
Н	4.357	15.404	8.493

С	2.834	11.179	8.8
Н	2.122	11.072	9.389
С	3.262	12.379	8.236
Н	2.882	13.212	8.401
С	7.346	15.003	5.399
Н	8.019	15.453	4.942
С	3.647	10.193	8.332
Н	3.607	9.29	8.553
С	7.931	13.018	4.209
Н	8.706	13.549	3.961
Н	7.419	12.84	3.405
С	6.568	15.666	6.372
С	5.584	16.951	7.911
Н	5.345	17.664	8.459
С	8.387	11.712	4.817
Н	9.018	11.317	4.18
С	7.252	10.699	4.982
Н	6.842	10.537	4.116
Н	7.618	9.859	5.3
С	6.559	16.946	6.925
Н	7.103	17.658	6.68

Complex 2

Ni	0.238	8.774	6.831
0	2.176	7.192	4.391
Н	1.618	6.707	3.991

Ν	-0.3	8.688	5.008
N	2.051	9.169	6.402
Ν	0.848	8.859	8.622
Ν	-1.546	8.252	7.176
С	2.218	8.963	8.69
С	-2.292	8.137	6.021
С	-1.55	8.383	4.842
Н	-1.943	8.326	3.979
С	2.84	9.15	7.436
Н	3.78	9.257	7.352
С	2.631	9.415	5.084
Н	3.601	9.215	5.109
Н	2.521	10.37	4.849
С	1.968	8.557	4.026
Н	2.448	8.715	3.163
С	0.517	8.932	3.82
Н	0.462	9.891	3.58
Н	0.152	8.408	3.063
С	0.409	8.75	9.903
Н	-0.502	8.673	10.161
С	1.487	8.765	10.783
Н	1.443	3 8.69	8 11.73
С	-3.57	4 7.6	6.312
Η	-4.27	8 7.51	9 5.694
С	-2.36	7.85	5 8.193

Н	-2.111	7.817	9.11
С	2.639	8.897	10.02
Н	3.533	8.934	10.338
С	-3.612	7.514	7.688
Н	-4.359	7.219	8.196

Coordinates of all the optimized geometries of the metal complexes with pNPP

(1+pNPP)

Cu adduct-

Cu	-1.22527 -0.17584 -2.28604
Ν	0.01298 -1.43282 -1.66998
Ν	0.12767 0.95871 -1.55411
Ν	-2.36347 -1.38729 -1.43131
Ν	-2.65373 0.95924 -1.71738
0	-1.4435 2.43294 0.38457
Η	-1.44123 1.47284 0.38376
С	1.11255 -0.98728 -1.17245
С	1.2097 0.37454 -1.10718
Η	2.06351 0.89929 -0.73057
С	-2.22377 -2.68223 -1.0989
Н	-1.3459 -3.27825 -1.23345
С	1.2432 -3.17197 -1.08084
Η	1.56946 -4.17786 -0.91679
С	0.00276 -2.77087 -1.62755
Η	-0.79032 -3.41307 -1.94832

- C -3.74211 0.37289 -1.29883
- Н -4.67015 0.8734 -1.11718
- C 1.94449 -2.03963 -0.80194
- Н 2.92692 -1.97219 -0.38238
- C -2.58256 2.42224 -1.72576
- Н -3.43252 2.81219 -1.20642
- Н -2.58642 2.77185 -2.73705
- C -3.52769 -0.95961 -1.0889
- C -3.41376 -3.10161 -0.56324
- Н -3.63888 -4.08707 -0.21223
- C -1.33336 2.91208 -0.95866
- Н -1.33295 3.98224 -0.97342
- C 0.02269 2.42942 -1.51318
- Н 0.17646 2.80913 -2.5017
- Н 0.77761 2.80751 -0.85582
- C -4.28167 -1.99759 -0.56186
- Н -5.29634 -1.9638 -0.22355
- P -1.62176 0.67792 -5.01718
- O -0.98208 1.57181 -6.32761
- O -0.56293 0.77578 -3.70363
- O -1.8124 -0.95677 -5.48341
- C -5.75286 0.14879 -6.97018
- C -4.86703 0.17609 -5.88356
- C -4.03805 1.2894 -5.68423
- C -4.0895 2.36938 -6.57652

- C -4.97429 2.3399 -7.66263
- C -5.80636 1.23062 -7.85873
- Н -6.38839 -0.69828 -7.1212
- Н -4.82543 -0.65179 -5.20671
- Н -3.45341 3.2165 -6.42837
- Н -5.01499 3.16529 -8.34193
- N -6.73491 1.20305 -8.99766
- O -7.47141 0.22363 -9.17245
- O -6.78072 2.15909 -9.78199
- O -3.13981 1.32783 -4.57055
- O -1.91608 -1.00379 -3.76432
- Н -2.1707 -1.46005 -4.74851
- Н -2.87141 -1.05336 -3.68526

Ni adduct-

(2+pNPP)

- Ni -0.158 11.95749 6.51182
- O 1.93938 9.89896 4.23006
- Н 1.5963 9.31546 3.54907
- N -0.53228 11.14855 4.83874
- N 1.71784 11.97068 6.2494
- N 0.44059 11.63972 8.23433
- N -1.27044 10.55471 6.99239
- C 1.71411 11.64655 8.43259

- C -1.87065 9.91258 6.04986
- C -1.50608 10.2831 4.7942
- Н -1.93824 9.89618 3.89508
- C 2.46617 11.84515 7.31328
- Н 3.53511 11.88698 7.30639
- C 2.35384 12.15569 4.93151
- H 3.3855 11.88083 5.00756
- Н 2.27089 13.18648 4.656
- C 1.7313 11.25963 3.84118
- Н 2.23483 11.46413 2.91956
- C 0.21407 11.44587 3.61217
- Н -0.01668 12.43882 3.28674
- Н -0.07071 10.74411 2.85594
- C -0.21226 11.38831 9.38116
- Н -1.27163 11.30572 9.5046
- C 0.76374 11.25796 10.39345
- Н 0.58719 11.06364 11.43051
- C -2.74578 8.9654 6.56993
- Н -3.40212 8.31615 6.02942
- C -1.61319 10.05346 8.19095
- Н -1.2365 10.36645 9.14218
- C 2.00899 11.43228 9.7744
- Н 2.97487 11.40355 10.23259
- C -2.57169 9.04201 7.9589
- Н -3.06788 8.44954 8.69901

- 0 -1.59975 12.96454 6.94003 Η -1.45289 13.38778 7.78914 -2.13261 11.96665 4.60709 Η Р -1.1732 14.22856 5.24316 -0.84503 15.76258 4.5623 0 0 0.19693 13.57333 5.77749 0 -1.86445 13.21318 4.05359 -5.71818 14.73196 5.15578 С С -4.52296 14.16168 5.61611 С -3.48422 14.98484 6.07256
- C -3.63929 16.37745 6.06572
- C -4.83385 16.94739 5.60591
- C -5.874 16.1252 5.15254
- Н -6.51117 14.10338 4.80719
- Н -4.4034 13.09817 5.61919
- Н -2.8455 17.00591 6.4118
- Н -4.95245 18.01067 5.60091
- N -7.12759 16.72609 4.67402
- O -8.04849 16.00289 4.27322
- O -7.26199 17.95672 4.67266
- O -2.26629 14.40471 6.54594