Electionic Supplementant Matarias (FSI) for New natural of Shemistry. This Journals & Phene Basac Sector Chernister International Chernich National Cherner Cherchen Science 2023

Supporting Information

Nonlinear Properties of Intramolecular Charge-Transfer Compounds Based on Benzothiadiazole

Xiang-Zhao Zhu,^a Hong-Dan Hu,^a Song-Hua Chen,^{*b} Yuan-Ming Li,^{*a} and Jian-Feng Yan^{*a} and Yao-Feng Yuan^{*a}

^aLaboratory of Molecule Synthesis and Function Discovery (Fujian Province University), Department of Chemistry, Fuzhou University, Fuzhou 350108, China;

^bCollege of Chemistry and Material Science, Longyan University, Longyan 364012, China;

Corresponding to e-mail:<u>ayaofeng_yuan@fzu.edu.cn,</u> ayuanming.li@xmu.edu.cn, ayanjianfeng@fzu.edu.cn, bsonghua@iccas.ac.cn

Table of Content

1. Experimental section	3
1.1 Materials and reagents.	3
1.2 Syntheses and Characterizations	3
2. Optical Properties	4
2.1 UV-vis absorption measurements	4
2.2 Fluorescence emission spectra	6
3. Nonlinear data supplement	7
4. Electrochemistry	9
5.Computational Methodology and Calculation data:	9
5.1 Theoretical calculation data summarized in tables	10
5.2 Optimized geometries and calculated energies, dipole moment, Mulliken charge	es.
	11

1. Experimental section

1.1 Materials and reagents.

All commercial chemical reagents were purchased from Admas and used directly without purification. Column chromatography mainly used silica gel with 100-200 mesh and 200-300 mesh specifications for purification and separation, respectively. Dry solvents are all purchased from Tansoole Platform (Shanghai Titan Technology Co. Ltd.) and Energy Chemical. All air and moisture-sensitive reactions were carried out in an argon atmosphere. *N*,*N*-dimethyl-4-((4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)phenyl)ethynyl)aniline, (*E*)-(2-(4-(4-(dimethylamino)styryl)phenyl)-4,5,5-trimethyl-1,3,2-dioxaborolan-4-yl)methylium, (*E*)-4-(4-ethynylstyryl)-*N*,*N*-dimethylaniline and 4-bromo-7-nitrobenzo[c][1,2,5]thiadiazole were prepared according to the literature methods.^{1, 2}

1.2 Syntheses and Characterizations

N,N-dimethyl-4-((4-(7-nitrobenzo[c][1,2,5]thiadiazol-4-yl)phenyl)ethynyl)aniline(BTN-1)

A 50 mL three-neck round-bottom flask with a magnetic stir bar was added with *N*,*N*-dimethyl-4-((4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)phenyl)ethynyl)aniline (330 mg, 0.95 mmol), 4-bromo-7-nitrobenzo[c][1,2,5]thiadiazole (273.6 mg, 1.05 mmol) and Pd(PPh₃)₄ (55.6 mg, 0.048 mmol). Then Potassium acetate (306mg, 3.12mmol) in dioxane (5 mL) and distilled water (2.5 mL) were added. The mixture was stirred at 90°C overnight under N₂ atmosphere. The reaction mixture was cooled down to room temperature and was quenched by adding H₂O. The reaction mixture was then washed with CH₂Cl₂ and dried with anhydrous Na₂SO₄. The filtrate was dried under reduced pressure and subjected to silica gel flash chromatography.

BTN-1. Chromatography (Petroleum ether/CH₂Cl₂, 2:1 v/v). Yield 53%, purple-black solid. ¹H NMR (500 MHz, CDCl₃) δ 8.77 (d, J = 8.0 Hz, 1H), 8.11 (dd, J = 9.9, 8.2 Hz, 3H), 7.71 (d, J = 8.4 Hz, 2H), 7.41 (d, J = 8.9 Hz, 2H), 6.74 (d, J = 9.0 Hz, 2H), 2.97 (s, 6H). ¹³C NMR (126 MHz, CDCl₃) δ 154.5, 150.4, 147.3, 141.12, 138.5, 134.4, 133, 131.7, 129.7, 128.1, 126.5, 125.7, 111.9, 109.5, 93.7, 87.5, 40.3. HRMS (ESI, m/z): calcd. for C₂₂H₁₆N₄O₂S [M+H]⁺: 401.1067; found: 401.1065.

(E)-N,N-dimethyl-4-(4-(7-nitrobenzo[c][1,2,5]thiadiazol-4-yl)styryl)aniline(BTN-2)

A 50 mL three-neck round-bottom flask with a magnetic stir bar was added with (*E*)-(2-(4-(4-(dimethylamino)styryl)phenyl)-4,5,5-trimethyl-1,3,2-dioxaborolan-4-yl)methylium (365 mg, 1.05 mmol), 4-bromo-7-nitrobenzo[c][1,2,5]thiadiazole (309.6 mg, 1.18 mmol) and Pd(PPh₃)₄ (64.7 mg, 0.056mmol). Then Potassium acetate (302 mg, 3.08 mmol) in dioxane (5 mL) and distilled water (2.5 mL) were added. The mixture was stirred at 85°C overnight under N₂ atmosphere. The reaction mixture was cooled down to room temperature and was quenched by adding H₂O. The reaction mixture was then washed with CH₂Cl₂ and dried with anhydrous Na₂SO₄.

The filtrate was dried under reduced pressure and subjected to silica gel flash chromatography.

BTN-2. Chromatography (Petroleum ether/CH₂Cl₂, 1:1 v/v). Yield 55%, purple solid. ¹H NMR (500 MHz, CDCl₃) δ 8.69 (d, *J* = 7.9 Hz, 1H), 7.99 (d, *J* = 8.4 Hz, 2H), 7.87 (d, *J* = 8.0 Hz, 1H), 7.67 (d, *J* = 8.4 Hz, 2H), 7.46 (d, *J* = 8.8 Hz, 2H), 7.20 (d, *J* = 16.3 Hz, 1H), 6.99 (d, *J* = 16.2 Hz, 1H), 6.73 (d, *J* = 8.8 Hz, 2H), 3.01 (s, 6H). ¹³C NMR (126 MHz, CDCl₃) δ 154.6, 150.6, 147.6, 141.8, 140.4, 138.2, 133.7, 131.0, 130.2, 128.3, 128.1, 127.7, 126.5, 125.2, 123.1, 112.4, 40.5. HRMS (ESI, *m/z*): calcd. for C₂₂H₁₈N₄O₂S [M+H]⁺: 403.1215, found: 403.1223.

(E)-N,N-dimethyl-4-(4-((7-nitrobenzo[c][1,2,5]thiadiazol-4-yl)ethynyl)styryl)aniline(BTN-3)

A 50 mL three-neck round-bottom flask with a magnetic stir bar was added with (*E*)-4-(4-ethynylstyryl)-*N*,*N*-dimethylaniline (251.2 mg, 1.02 mmol), and 4-bromo-7-nitrobenzo[c][1,2,5]thiadiazole (301.2mg, 1.16mmol), PdCl₂(PPh₃)₂ (38 mg, 0.033mmol) and CuI (32 mg, 0.168mmol). Then THF/ (*i*-Pr)₂NH (30 mL / 10 mL) was added. The mixture was stirred at room temperature for 6 h under Ar atmosphere. The mixture was dried under reduced pressure and subjected to silica gel flash chromatography.

BTN-3. Chromatography (Petroleum ether/CH₂Cl₂, 2:1 v/v). Yield 51%, purple-black solid. ¹H NMR (500 MHz, CDCl₃) δ 8.61 (d, J = 7.9 Hz, 1H), 7.89 (d, J = 7.9 Hz, 1H), 7.66 (d, J = 8.3 Hz, 2H), 7.53 (d, J = 8.2 Hz, 2H), 7.44 (d, J = 8.7 Hz, 2H), 7.15 (d, J = 16.2 Hz, 1H), 6.92 (d, J = 16.2 Hz, 1H), 6.72 (d, J = 8.9 Hz, 2H), 3.01 (s, 6H). 7.44 (d, J = 8.7 Hz, 2H), 7.15 (d, J = 16.2 Hz, 1H), 6.92 (d, J = 16.2 Hz, 1H), 6.72 (d, J = 8.9 Hz, 2H), 3.01 (s, 6H). 7.44 (d, J = 8.7 Hz, 2H), 7.15 (d, J = 16.2 Hz, 1H), 6.92 (d, J = 16.2 Hz, 1H), 6.72 (d, J = 8.9 Hz, 2H), 3.01 (s, 6H). ¹³C NMR (126 MHz, CDCl₃) δ 159.7, 153.9, 150.7, 142, 140.4, 137.5, 133.7, 131.0, 130.2, 129.9, 128.1, 127.7, 126.5, 125.2, 123.1, 112.4, 93.3, 40.5. HRMS (ESI, m/z): calcd. for C₂₄H₁₈N₄O₂S [M+H]⁺: 427.1223; found: 427.1217.

References

- 1. J. Kulhánek, F. Bureš and M. J. B. j. o. o. c. Ludwig, 2009, 5, 11.
- C.-F. Yang, L.-Y. Zeng, B.-K. Ning, J.-Y. Wang, H. Zhang, Z.-H. J. S. A. P. A. M. Zhang and B. Spectroscopy, 2020, 225, 117482.

2. Optical Properties

2.1 UV-vis absorption measurements

Fig. S1 Optical absorption spectra of the chromophores BTN-1 in solvents of varying polarity

Fig. S2 Optical absorption spectra of the chromophores BTN-2 in solvents of varying polarity

Fig. S3 Optical absorption spectra of the chromophores BTN-3 in solvents of varying polarity.

The particular behavior observed from BTN-1, BTN-2 and BTN-3 is the change in spectral shape in different solvents (Fig. S1-3), which shows some subtle effects. From Fig. S1-3, the largest red-shift is chloroform followed by dichlorine, and the largest blue shift is 1,4-Dioxane followed by THF and DMF. This is one of the reasons why chloroform was chosen as the solventization model in the theoretical calculations.

2.2 Fluorescence emission spectra

Fig. S4 Fluorescence emission spectra of the chromophores BTN-1 in solvents of varying polarity.

Fig. S5 Fluorescence emission spectra of the chromophores BTN-2 in solvents of varying polarity.

Fig. S6 Fluorescence emission spectra of the chromophores BTN-3 in solvents of varying polarity.

The fluorescence spectra of BTN-1, BTN-2 and BTN-3 were measured in a different diluted solution. As shown in Fig. S4-6. However, the fluorescent emission spectrum of BTN-1, BTN-2 and BTN-3 show significant red-shifts from low polarity to high polarity solvents (Fig. S4-6). The strong solvent polarity-dependent fluorescence indicates that BTN-1, BTN-2 and BTN-1 have a highly charged excited state due to photoinduced charge transfer.

3. Nonlinear data supplement

(Because the BTN-2 liner transmission index is too low, the nonlinear signal response is too weak to fit.)

To understand the nonlinear properties of the chromophores in the solution, there is an assumption of a particle non-interaction solution. Thus, the effective refractive nonlinearity in the pair-wise additive model can be expressed as: $n_{2, solution} = (1 - f) n_{2, solvent} + f n_{2, solute} #(1)$

where f is the molar fraction (the ratio of the amount of solute substance to the amount of solution substance) contained in the dilute solution, $n_{2, solvent}$ and $n_{2, solute}$ are the nonlinear refractive indices of the solvent and solute, respectively. Molar mass M_{DMF} = 73.09 g/mol, density ρ_{DMF} = 0.944 g/ml, d_0 = 1 × 10⁻⁵ mol/ml, $f = d_0/(d_0 + \rho_{DMF}/M_{DMF})$ = 0.077 %.

Fig. S7 Normalized closed-aperture Z-Scan curve of BTN-2.

Fig. S8 Normalized closed-aperture Z-Scan curve of BTN-3.

4. Electrochemistry

Fig. S9 Electrochemical spectra of BTN-1, BTN-2 and BTN-3.

Table S1 Electrochemical properties of BTN-3, BTN-4 and BTN-5.

Compound	E ^{onset} ox, ^a	$E_{\rm red}^{\rm onset}$	HOMO/LUMO (eV) ^b	HOMO/LUMO (eV) ^d	∆E _g (eV) ^c	ΔE_{g} (eV) ^d
BTN-1	0.78	-1.27	-2.73 / -5.18	-3.33 / -5.53	2.45	2.20
BTN-2	0.60	-1.26	-2.74 / -5.00	-3.28 / -5.38	2.26	2.10
BTN-3	0.59	-1.15	-3.25 / -4.99	-3.09 / -5.31	1.74	1.96

^a Measured in CH_2CI_2 solution (glass carbon electrode with 0.1 M n-Bu₄NF₆ as the supporting electrolyte). The voltages are referenced to a SCE electrode.

^{*b*} Calculated based on the respective onset oxidation and reduction potentials. ^{*c*} HOMO and LUMO gap calculated based on the redox potentials: $E_g = -e(\stackrel{E}{\overset{F}{red}} - \stackrel{e}{\overset{ox}{red}})eV$.

^d Calculated based on PBE1PBE/6-31G*.

From the energy levels calculated theoretically and projected electrochemically, the ΔE_g of the three chromophores are BTN-1 > BTN-2 > BTN-3 from small to large, which is consistent with the mechanism that the energy gap decreases with the growth of conjugation.

5. **Computational Methodology and Calculation data**

Unfortunately, due to the very low solubility of the three compounds, we only obtained crystals of BTN-1 and BTN-3, and the crystal data obtained was not usable because the points of the crystals were too weak. Therefore, all structural optimization calculations are performed by Gaussian 16W.

5.1 Theoretical calculation data summarized in tables

Table S2. The computed dipole moment of chromophores under vacuum and chloroform conditions

Chromophor		vacuum		polar medium (CHCl ₃)			
е	$\mu_{ m g}$ (D)	$\mu_{ m e}$ (D)	Δμ (D)	μ_g (D)	$\mu_{ m e}$ (D)	Δμ (D)	
BTN-1	11.54	51.74	40.20	13.38	40.82	27.44	

BIN-2 11.05 48:00 57.05 14.10 58:25	14.19
BIN 2 11.05 48.00 57.05 14.10 58.25	

	7	א _{Max} (nm)	а		$\mu_{ m ge}$ (D) b			E _{ge} (eV) ^b		<i>M</i> _{ge} (D) ^c		
	1.4-		DM	1.4-			1.4-		DM	1.4-		
	Dio	CHCl₃	F	Dio	CHCl₃	DMF	Diox	CHCl₃	F	Dio	CHCl₃	DMF
BTN-												
1	448	472	446	9.16	9.23	9.25	1.89	1.86	1.85	7.38	6.43	7.30
BTN-					10.2	10.3						10.1
2	480	501	487	10.02	0	3	1.80	1.75	1.73	9.95	9.38	0
BTN-					12.1	12.2						
3	481	511	489	11.92	2	7	1.72	1.67	1.63	9.96	9.51	9.85

^a Assigned to ICT excitation, and from UV-vis absorption in THF.

^b Calculated by PBE1PBE/aug-cc-pVTZ

$$m_{ge}^{2} = \frac{1500(hc)^{2}\ln 10}{\pi N_{A}E_{ge}} \int \varepsilon_{ge}(v) dv$$

^c Calculated from

Comparing the theoretical calculations and the estimated transition dipole moment based on the UV-Vis ICT peak area, the size of the dipole moment is basically at a moderate level, so it is known that the impact of the transition dipole moment on the nonlinear response is not significant.

Table S4. Experimentally measured and theoretically calculated optical properties and frontier												
	molecular orbita											
) (2.22)($\Delta\lambda_{st}$	$\Delta\lambda_{\max}$	λ_{max}	Oscillation	Energy	Selected major				
	λ _{abs} (nm) ^a	(nm) ^{<i>b</i>}	(nm)	(nm) ^c	(nm) ^d	strength, f ^d	(ev) ^{<i>d</i>}	contributions ^d				
BTN- 1		57 472		16.8	665.79	0.52	1.86	H -> L, 99.1 %				
	227/457		15		412.20	0.41	3.01	H-1 -> L, 93.6 %				
	327/457				388.52	0.24	3.19	H -> L+1, 95.2 %				
					353.74	0.79	3.51	H -> L+2, 91.6 %				
			15.2	2 25.2	706.50	0.58	1.75	H -> L, 99.2 %				
	334/360/48	497			424.07	0.42	2.02	H-1 -> L, 90.7 %,				
					424.97	.97 0.42	2.92	H -> L, 5.7 %				
BTN-					405.96	0 22	3.05	H -> L+1, 92.8 %,				
2	2					0.33	3.05	H -> L+2, 5.8 %				
								H -> L+2 86.5 %,				
									376.60	0.57	3.29	H-1 -> L 6.8 %,
								H -> L+1 5.3 %				
					744.38	0.81	1.67	H -> L, 99.4 %				
					462.75	0.75	2.69	H-1 -> L, 90.8 %,				
DTN	220/200/50				462.75	0.75	2.68	H -> L+2, 6.2 %				
ын- 2	338/380/50	533	30.6	39.2	412 74	0.64	2.00	H -> L+1, 75.5 %,				
3	3				412.74	0.64	3.00	H -> L+2, 19.5 %				
					200 77	0.16	2 1 0	H -> L+2 72.4%, H ->				
					300.//	0.10	3.18	L+1 22.4%				

^a Experimentally measured UV absorption peaks

^b Experimentally measured fluorescence emission peaks

^c Calculated by PBE1PBE/aug-cc-pVTZ in solvents of varying polarity.

^{*d*} Calculated by PBE1PBE/aug-cc-pVTZ under an applied electric field of single-linear state.

5.2 Optimized geometries and calculated energies, dipole moment, Mulliken charges.

BTN-1 Theoretical calculation data supplement:

Table 1. BTN-1 Optimization of ground state geometry in vacuum

Standard orientation:

Center	Atomic	Atomic	Coordinates (Angstroms)				
Number	Number	Туре	Х	Y	Z		
1	6	0	5.372482	-1.873795	-0.324138		
2	6	0	6.219177	-0.805277	-0.149716		
3	6	0	5.660878	0.490356	0.078628		
4	6	0	4.205283	0.618767	0.108488		
5	6	0	3.336444	-0.514046	-0.084761		
6	6	0	3.967483	-1.729822	-0.295964		
7	7	0	6.301674	1.642168	0.295644		
8	16	0	5.145413	2.785423	0.522174		
9	7	0	3.796410	1.867930	0.355731		
10	6	0	-5.786720	-1.184284	0.452195		
11	6	0	-7.170001	-1.132218	0.444031		
12	6	0	-7.855502	-0.000471	-0.062838		
13	6	0	-7.073262	1.085010	-0.524827		
14	6	0	-5.690475	1.022478	-0.512036		
15	7	0	-9.231528	0.036643	-0.108067		
16	6	0	-9.907123	1.293910	-0.434307		
17	6	0	-10.007515	-1.006531	0.564358		
18	6	0	-3.593889	-0.172010	-0.021961		
19	6	0	-5.009049	-0.113766	-0.027259		
20	6	0	1.870525	-0.406773	-0.046285		
21	6	0	1.098848	-1.479214	0.443044		
22	6	0	-0.285106	-1.423721	0.455427		
23	6	0	-0.962172	-0.281142	-0.032612		
24	6	0	-0.191829	0.789747	-0.520863		
25	6	0	1.193132	0.732816	-0.520958		
26	6	0	-2.377104	-0.219800	-0.026588		
27	7	0	7.659470	-1.041000	-0.213277		
28	8	0	8.407049	-0.070898	-0.128900		
29	8	0	8.036607	-2.209383	-0.352022		
30	1	0	5.814648	-2.846309	-0.501494		
31	1	0	3.364156	-2.611381	-0.480924		
32	1	0	-5.285954	-2.066306	0.842440		
33	1	0	-7.723787	-1.980457	0.831466		
34	1	0	-7.550931	1.979672	-0.899083		
35	1	0	-5.114361	1.865975	-0.875702		
36	1	0	-9.678469	2.112045	0.286700		
37	1	0	-9.617729	1.649735	-1.451791		
38	1	0	-10.985324	1.114445	-0.437161		
39	1	0	-9.775396	-2.008582	0.138702		

40	1	0	-9.818024	-1.046513	1.664244
41	1	0	-11.069309	-0.809879	0.396168
42	1	0	1.596054	-2.353105	0.852340
43	1	0	-0.862532	-2.247782	0.850859
44	1	0	-0.699464	1.669724	-0.901798
45	1	0	1.761342	1.572729	-0.898936

Standard basis: 6-31G(d) (6D, 7F)

SCF Done: E(RB3LYP) = -1615.55248267 a.u.

Thermal correction to Gibbs Free Energy = 0.278524 a.u.

Table 2 BTN-1 Calculation of excited state geometry in vacuum and dipole moments

		Standard	orientation		
Center	er Atomic Atomic Coordinates (Angstroms				ms)
Number	Number	Туре	Х	Y	Z
1	6	0	5.361551	-1.867296	-0.336899
2	6	0	6.208173	-0.804556	-0.155957
3	6	0	5.651638	0.486753	0.079402
4	6	0	4.204441	0.617339	0.109198
5	6	0	3.333047	-0.508030	-0.087864
6	6	0	3.959068	-1.721039	-0.306842
7	7	0	6.290699	1.634580	0.302310
8	16	0	5.143989	2.760904	0.529496
9	7	0	3.802530	1.864608	0.360785
10	6	0	-5.778473	-1.166597	0.480595
11	6	0	-7.159329	-1.111093	0.488505
12	6	0	-7.845785	0.022925	-0.000590
13	6	0	-7.066231	1.090475	-0.499637
14	6	0	-5.685860	1.024326	-0.502704
15	7	0	-9.216057	0.085276	0.009245
16	6	0	-9.889126	1.242629	-0.528651
17	6	0	-9.985376	-1.034801	0.494337
18	6	0	-3.589187	-0.165132	-0.019656
19	6	0	-5.003970	-0.103028	-0.013480
20	6	0	1.868770	-0.398750	-0.051139
21	6	0	1.100308	-1.463403	0.449202
22	6	0	-0.281561	-1.407843	0.463805
23	6	0	-0.957583	-0.278343	-0.032997
24	6	0	-0.190509	0.790201	-0.531366
25	6	0	1.192356	0.733602	-0.533370
26	6	0	-2.372497	-0.217301	-0.025430
27	7	0	7.642514	-1.042563	-0.220627
28	8	0	8.383474	-0.081032	-0.127383
29	8	0	8.011172	-2.201159	-0.368461
30	1	0	5.803923	-2.840016	-0.520688
31	1	0	3.352754	-2.600769	-0.497175

32	1	0	-5.277418	-2.050951	0.863301
33	1	0	-7.711546	-1.958389	0.878647
34	1	0	-7.544870	1.981486	-0.889551
35	1	0	-5.112006	1.860243	-0.891942
36	1	0	-9.613467	2.159767	0.009917
37	1	0	-9.663335	1.392696	-1.594238
38	1	0	-10.967492	1.109496	-0.429436
39	1	0	-9.805185	-1.945154	-0.095408
40	1	0	-9.757155	-1.259610	1.545314
41	1	0	-11.048036	-0.796513	0.427883
42	1	0	1.598212	-2.334157	0.866992
43	1	0	-0.857563	-2.233900	0.868976
44	1	0	-0.698304	1.667498	-0.919739
45	1	0	1.759502	1.571819	-0.920804

Ground to excited state transition electric dipole moments (Au):

state	Х	Y	Z	Dip. S.	Osc.
1	2.9401	-0.0265	-0.0069	8.6447	0.4270
2	-2.0110	0.0662	0.0236	4.0489	0.3105
3	-2.2529	0.1508	0.0220	5.0989	0.4219
4	-0.0231	0.0133	-0.0058	0.0007	0.0001
5	2.5027	-0.0194	0.0378	6.2654	0.5685
6	-0.7885	-0.1013	0.0696	0.6368	0.0579
7	-0.1698	0.2423	0.0649	0.0918	0.0088
8	-0.0025	0.0075	0.0002	0.0001	0.0000
9	0.0140	0.0071	0.0015	0.0002	0.0000
10	0.0266	-0.0216	0.0495	0.0036	0.0004
11	0.0957	-1.0163	-0.2082	1.0854	0.1122
12	-0.0472	0.4677	-0.2570	0.2870	0.0305
13	0.0214	0.2575	-0.0137	0.0669	0.0071
14	0.4348	-0.1074	0.0320	0.2016	0.0217
15	0.9784	-0.1344	-0.0318	0.9764	0.1065
16	-0.8431	-0.2221	-0.0396	0.7617	0.0884
17	0.3071	0.2175	0.0382	0.1431	0.0168
18	-0.4168	0.1812	0.0357	0.2078	0.0247
19	-0.0833	0.3492	0.0529	0.1317	0.0159
20	-0.0582	0.0244	0.0136	0.0042	0.0005
21	-0.0363	-0.0059	-0.0029	0.0014	0.0002
22	-0.5172	0.1053	0.0129	0.2787	0.0346
23	0.0280	-0.3187	0.0910	0.1107	0.0140
24	0.0037	-0.0592	0.0553	0.0066	0.0008
25	0.2144	-0.0758	-0.0503	0.0543	0.0069
26	0.0234	0.0085	-0.0172	0.0009	0.0001
27	-0.0139	-0.3598	0.1632	0.1563	0.0206
28	0.0676	-0.0053	0.0231	0.0051	0.0007
29	-0.1434	-0.5829	-0.1188	0.3745	0.0499
30	-0.0003	0.1662	0.3812	0.1730	0.0235
31	0.2054	0.1819	0.0435	0.0772	0.0105
32	-0.0137	0.0618	0.0333	0.0051	0.0007
33	0.0196	0.3826	-0.1682	0.1751	0.0240
34	-0.0316	0.0208	-0.0591	0.0049	0.0007
35	0.1049	-0.0047	-0.0149	0.0113	0.0016

36	0.0230	0.0111	0.0165	0.0009	0.0001
37	0.3216	0.0644	0.0695	0.1124	0.0157
38	-0.0625	-0.1837	-0.2909	0.1223	0.0173
39	0.2004	-0.0261	-0.1454	0.0620	0.0088
40	0.0595	-0.1394	-0.0408	0.0246	0.0035

Standard basis:TZVP (5D, 7F) SCF Done: E(RPBE1PBE) = -1614.29472680 a.u.

Table 3. BTN-1 Optimization of Ground State Geometry in Chloroform Solvent and Mulliken charges

		Standa	rd orientation:			
Center	Atomic	Atomic	Coordinates (Angstroms)			
Number	Number	Туре	Х	Y	Z	
1	6	0	5.372482	-1.873795	-0.324138	
2	6	0	6.219177	-0.805277	-0.149716	
3	6	0	5.660878	0.490356	0.078628	
4	6	0	4.205283	0.618767	0.108488	
5	6	0	3.336444	-0.514046	-0.084761	
6	6	0	3.967483	-1.729822	-0.295964	
7	7	0	6.301674	1.642168	0.295644	
8	16	0	5.145413	2.785423	0.522174	
9	7	0	3.796410	1.867930	0.355731	
10	6	0	-5.786720	-1.184284	0.452195	
11	6	0	-7.170001	-1.132218	0.444031	
12	6	0	-7.855502	-0.000471	-0.062838	
13	6	0	-7.073262	1.085010	-0.524827	
14	6	0	-5.690475	1.022478	-0.512036	
15	7	0	-9.231528	0.036643	-0.108067	
16	6	0	-9.907123	1.293910	-0.434307	
17	6	0	-10.007515	-1.006531	0.564358	
18	6	0	-3.593889	-0.172010	-0.021961	
19	6	0	-5.009049	-0.113766	-0.027259	
20	6	0	1.870525	-0.406773	-0.046285	
21	6	0	1.098848	-1.479214	0.443044	
22	6	0	-0.285106	-1.423721	0.455427	
23	6	0	-0.962172	-0.281142	-0.032612	
24	6	0	-0.191829	0.789747	-0.520863	
25	6	0	1.193132	0.732816	-0.520958	
26	6	0	-2.377104	-0.219800	-0.026588	
27	7	0	7.659470	-1.041000	-0.213277	
28	8	0	8.407049	-0.070898	-0.128900	
29	8	0	8.036607	-2.209383	-0.352022	
30	1	0	5.814648	-2.846309	-0.501494	
31	1	0	3.364156	-2.611381	-0.480924	
32	1	0	-5.285954	-2.066306	0.842440	
33	1	0	-7.723787	-1.980457	0.831466	
34	1	0	-7.550931	1.979672	-0.899083	
35	1	0	-5.114361	1.865975	-0.875702	
36	1	0	-9.678469	2.112045	0.286700	
37	1	0	-9.617729	1.649735	-1.451791	
38	1	0	-10.985324	1.114445	-0.437161	
39	1	0	-9.775396	-2.008582	0.138702	
40	1	0	-9.818024	-1.046513	1.664244	
41	1	0	-11.069309	-0.809879	0.396168	
42	1	0	1.596054	-2.353105	0.852340	
43	1	0	-0.862532	-2.247782	0.850859	
44	1	0	-0.699464	1.669724	-0.901798	

	4	5		1		0	1,761342	1.572729	-0.898936
Mulli	kon d	shargos:							
1	<u>кеп (</u>	-0 191496	24	C	-0.179525	_			
2	c	0.151450	25	c	-0 187029				
2	c	0.204707	26	c	-0.080153				
ر ۲	c	0.250515	27	N	0 359990				
5	c	0.118/80	27	0	-0 398/173				
5	c	0.110400	20	0	-0 / 20/181				
7	N	0 561201	20	ц	0.420401				
, 0	ri C	-0.301391	21	ч	0.241052				
0	М	0.040954	27	 Ц	0.213042				
9 10		-0.561955	32 33	н Ц	0.190900				
10	C	-0.1/2583	33 24	п 	0.187203				
11	C	-0.245740	34	н	0.187504				
12	С	0.375341	35	н	0.191328				
13	С	-0.244584	36	Н	0.189380				
14	С	-0.171234	37	Н	0.196351				
15	Ν	-0.514209	38	Н	0.200268				
16	С	-0.389169	39	н	0.197288				
17	С	-0.388624	40	н	0.188538				
18	С	-0.058825	41	н	0.200575				
19	С	-0.031225	42	н	0.197355				
20	С	0.065223	43	н	0.199038				
21	С	-0.207415	44	н	0.198574				
22	С	-0.175021	45	н	0.208180				
22	c	0 002204							

23 C 0.003294 Standard basis: 6-31G(d) (6D, 7F)

SCF Done: E(RPBE1PBE) = -1613.92365189 a.u.

Table 4. BTN-1 Calculation of excited state geometry in chloroform solvent and dipole moments

		Standard orientation:					
Center	Atomic	Atomic	Соо	rdinates (Angstro	oms)		
Number	Number	Туре	Х	Y	Z		
1	6	0	5.361551	-1.867296	-0.336899		
2	6	0	6.208173	-0.804556	-0.155957		
3	6	0	5.651638	0.486753	0.079402		
4	6	0	4.204441	0.617339	0.109198		
5	6	0	3.333047	-0.508030	-0.087864		
6	6	0	3.959068	-1.721039	-0.306842		
7	7	0	6.290699	1.634580	0.302310		
8	16	0	5.143989	2.760904	0.529496		
9	7	0	3.802530	1.864608	0.360785		
10	6	0	-5.778473	-1.166597	0.480595		
11	6	0	-7.159329	-1.111093	0.488505		
12	6	0	-7.845785	0.022925	-0.000590		
13	6	0	-7.066231	1.090475	-0.499637		
14	6	0	-5.685860	1.024326	-0.502704		
15	7	0	-9.216057	0.085276	0.009245		
16	6	0	-9.889126	1.242629	-0.528651		

17	6	0	-9.985376	-1.034801	0.494337
18	6	0	-3.589187	-0.165132	-0.019656
19	6	0	-5.003970	-0.103028	-0.013480
20	6	0	1.868770	-0.398750	-0.051139
21	6	0	1.100308	-1.463403	0.449202
22	6	0	-0.281561	-1.407843	0.463805
23	6	0	-0.957583	-0.278343	-0.032997
24	6	0	-0.190509	0.790201	-0.531366
25	6	0	1.192356	0.733602	-0.533370
26	6	0	-2.372497	-0.217301	-0.025430
27	7	0	7.642514	-1.042563	-0.220627
28	8	0	8.383474	-0.081032	-0.127383
29	8	0	8.011172	-2.201159	-0.368461
30	1	0	5.803923	-2.840016	-0.520688
31	1	0	3.352754	-2.600769	-0.497175
32	1	0	-5.277418	-2.050951	0.863301
33	1	0	-7.711546	-1.958389	0.878647
34	1	0	-7.544870	1.981486	-0.889551
35	1	0	-5.112006	1.860243	-0.891942
36	1	0	-9.613467	2.159767	0.009917
37	1	0	-9.663335	1.392696	-1.594238
38	1	0	-10.967492	1.109496	-0.429436
39	1	0	-9.805185	-1.945154	-0.095408
40	1	0	-9.757155	-1.259610	1.545314
41	1	0	-11.048036	-0.796513	0.427883
42	1	0	1.598212	-2.334157	0.866992
43	1	0	-0.857563	-2.233900	0.868976
44	1	0	-0.698304	1.667498	-0.919739
45	1	0	1.759502	1.571819	-0.920804

Ground to excited state transition electric dipole moments (Au):

state	Х	Y	Z	Dip. S.	Osc.
1	3.3916	-0.0546	-0.0117	11.5061	0.5249
2	-2.3679	0.1001	0.0312	5.6177	0.4140
3	-1.7467	0.1897	0.0323	3.0881	0.2414
4	3.0367	-0.0132	0.0178	9.2221	0.7919
5	-0.0536	-0.0762	0.0671	0.0132	0.0012
6	-0.0091	-0.1017	0.0690	0.0152	0.0014
7	-0.5575	0.3835	0.0902	0.4660	0.0438
8	0.0074	-0.0256	0.0065	0.0007	0.0001
9	0.0075	0.0353	0.0086	0.0014	0.0001
10	-0.0394	-1.2250	-0.2410	1.5604	0.1555
11	0.0377	-0.0167	0.0481	0.0040	0.0004
12	0.8673	-0.1760	-0.0358	0.7845	0.0822
13	0.0478	-0.6375	0.2979	0.4975	0.0522
14	0.2033	0.0141	0.0494	0.0439	0.0047
15	-0.0136	-0.0689	0.0047	0.0050	0.0005
16	-1.2135	-0.1417	-0.0201	1.4931	0.1709
17	0.2012	0.1636	0.0314	0.0682	0.0079
18	-0.3998	0.2392	0.0351	0.2183	0.0255
19	0.5513	-0.2042	-0.0277	0.3464	0.0420
20	0.2203	-0.2789	-0.0277	0.1271	0.0158
21	0.0552	0.1611	-0.0939	0.0378	0.0047
22	-0.0410	-0.1013	0.0362	0.0133	0.0017
23	0.0658	0.1040	-0.0318	0.0162	0.0020
24	-0.0349	0.1371	0.0726	0.0253	0.0032

25	0.1035	0.0634	0.1121	0.0273	0.0035
26	0.0050	0.2297	-0.1099	0.0649	0.0084
27	-0.2250	-0.8927	-0.1321	0.8651	0.1119
28	0.0193	0.0761	-0.0113	0.0063	0.0008
29	-0.0799	-0.1616	-0.0372	0.0339	0.0044
30	-0.0226	-0.5308	0.2392	0.3395	0.0450
31	0.1429	0.1685	0.0379	0.0502	0.0067
32	-0.0677	0.0301	0.0062	0.0055	0.0007
33	0.1050	0.0034	-0.0063	0.0111	0.0015
34	0.2827	0.0323	0.0334	0.0821	0.0113
35	0.2665	0.0719	0.1301	0.0931	0.0130
36	0.0214	-0.0585	-0.3270	0.1108	0.0156
37	0.0797	0.0998	0.0091	0.0164	0.0023
38	-0.0798	0.1183	0.1729	0.0503	0.0071
39	-0.0121	0.1932	0.4526	0.2423	0.0343
40	-0.3477	0.0797	0.0492	0.1297	0.0186

Standard basis: TZVP (5D, 7F)

SCF Done:E(RPBE1PBE) = -1614.30781131 a.u.

BTN-2 Theoretical calculation data supplement:

Table 5. BTN-2 Optimization of ground state geometry in vacuum

	Standard orientation:						
Center	Atomic	Atomic	Со	Coordinates (Angstroms)			
Number	Number	Туре	Х	Y	Z		
1	6	0	1.808879	-0.578643	0.017038		
2	6	0	1.094771	-1.686173	0.315130		
3	6	0	-0.247645	-1.717091	0.346745		
4	6	0	-0.998865	-0.635662	0.068569		
5	6	0	-0.306050	0.472304	-0.247194		
6	6	0	1.037511	0.490993	-0.270135		
7	6	0	-2.346227	-0.730106	0.114698		
8	6	0	-3.247483	0.240140	-0.132455		
9	6	0	-4.595082	0.147295	-0.087147		
10	6	0	-5.341922	1.231657	-0.368846		
11	6	0	-6.684303	1.205081	-0.341882		
12	6	0	-7.391600	0.098215	-0.032232		
13	6	0	-6.630834	-0.980999	0.248236		
14	6	0	-5.287523	-0.963085	0.223203		
15	7	0	-8.673625	0.074579	-0.006846		
16	6	0	-9.379903	-1.185178	0.345763		
17	6	0	-9.439217	1.307269	-0.330303		
18	6	0	3.170586	-0.568451	-0.007260		
19	6	0	3.862474	-1.719112	-0.152227		
20	6	0	5.201096	-1.782827	-0.217913		
21	6	0	5.980005	-0.689308	-0.132067		
22	6	0	5.312503	0.472914	0.034132		
23	6	0	3.957713	0.529012	0.095099		
24	7	0	5.884182	1.598709	0.158201		
25	16	0	4.776322	2.865842	0.384929		
26	7	0	3.536368	1.707971	0.298189		
27	7	0	7.233365	-0.800895	-0.206913		
28	8	0	8.080945	0.199784	-0.138563		
29	8	0	7.834934	-1.959194	-0.368400		
30	1	0	1.572498	-2.635715	0.603712		
31	1	0	-0.726333	-2.673528	0.624903		

32	1	0	-0.813228	1.410539	-0.522512
33	1	0	1.462527	1.446456	-0.609193
34	1	0	-2.740508	-1.721811	0.387760
35	1	0	-2.852177	1.231654	-0.404661
36	1	0	-4.861024	2.190186	-0.634955
37	1	0	-7.172064	2.160641	-0.592872
38	1	0	-7.075821	-1.952531	0.517322
39	1	0	-4.782310	-1.909777	0.471365
40	1	0	-9.168002	-1.991690	-0.392696
41	1	0	-9.138694	-1.510925	1.383174
42	1	0	-10.482606	-1.039721	0.324904
43	1	0	-9.228428	2.121242	0.400182
44	1	0	-9.250850	1.641454	-1.375975
45	1	0	-10.534092	1.121274	-0.266651
46	1	0	3.365538	-2.693036	-0.285371
47	1	0	5.642048	-2.784922	-0.363739

Standard basis: 6-31G(d) (6D, 7F)

SCF Done: E(RB3LYP) = -1616.61870359 a.u.

Thermal correction to Gibbs Free Energy = 0.302386 a.u.

Table 6. BTN-2 Calculation of excited state geometry in vacuum and dipole moments

		Standa	a offentation.			
Center	Atomic	Atomic	Со	Coordinates (Angstroms)		
Number	Number	Туре	Х	Y	Z	
1	6	0	1.839197	-0.579703	0.021578	
2	6	0	1.154066	-1.704405	0.507519	
3	6	0	-0.228589	-1.732899	0.555353	
4	6	0	-1.003884	-0.646535	0.113598	
5	6	0	-0.311093	0.478772	-0.369256	
6	6	0	1.070568	0.516392	-0.408318	
7	6	0	-2.453761	-0.741339	0.184778	
8	6	0	-3.341923	0.196738	-0.207291	
9	6	0	-4.790783	0.122135	-0.144921	
10	6	0	-5.556881	1.197328	-0.621175	
11	6	0	-6.940223	1.193728	-0.592558	
12	6	0	-7.648026	0.087327	-0.078359	
13	6	0	-6.883397	-0.996249	0.412003	
14	6	0	-5.502900	-0.972531	0.374391	
15	7	0	-9.021070	0.060821	-0.055371	
16	6	0	-9.709135	-1.040374	0.573825	
17	6	0	-9.766297	1.224795	-0.469193	
18	6	0	3.304421	-0.588014	-0.054966	
19	6	0	4.006053	-1.752212	-0.311468	
20	6	0	5.413175	-1.802551	-0.379957	
21	6	0	6.191899	-0.687957	-0.202462	
22	6	0	5.555972	0.558645	0.069942	
23	6	0	4.104271	0.590473	0.139556	
24	7	0	6.122352	1.743295	0.296413	
25	16	0	4.909106	2.785892	0.573865	
26	7	0	3.626824	1.803439	0.424230	
27	7	0	7.635735	-0.827459	-0.308307	
28	8	0	8.313800	0.179423	-0.211816	
29	8	0	8.077447	-1.955396	-0.491457	
30	1	0	1.715415	-2.553556	0.887953	
31	1	0	-0.730504	-2.612280	0.952398	

Standard orientation:

32	1	0	-0.863093	1.344608	-0.722708
33	1	0	1.568355	1.402418	-0.784747
34	1	0	-2.825582	-1.677976	0.598394
35	1	0	-2.961532	1.128647	-0.625517
36	1	0	-5.045939	2.068528	-1.026499
37	1	0	-7.473113	2.058330	-0.971587
38	1	0	-7.376841	-1.866547	0.829789
39	1	0	-4.964890	-1.831645	0.765913
40	1	0	-9.464885	-1.994841	0.089425
41	1	0	-9.467222	-1.129374	1.643583
42	1	0	-10.786047	-0.889840	0.482122
43	1	0	-9.548583	2.104651	0.154816
44	1	0	-9.550791	1.487201	-1.513272
45	1	0	-10.834194	1.012894	-0.395137
46	1	0	3.455649	-2.667762	-0.502485
47	1	0	5.914850	-2.739992	-0.592576

Ground to excited state transition electric dipole moments (Au):

state	Х	Y	Z	Dip. S.	Osc.
1	3.1219	-0.0087	-0.0100	9.7466	0.4660
2	-2.2060	0.0169	0.0400	4.8684	0.3667
3	-2.6410	0.2023	0.0130	7.0157	0.5613
4	-0.1827	0.0238	-0.0124	0.0341	0.0029
5	-1.9468	0.0417	-0.0379	3.7932	0.3274
6	0.1599	0.0999	-0.0638	0.0396	0.0036
7	-0.4134	0.1500	0.0946	0.2024	0.0193
8	0.0717	-0.0151	0.0052	0.0054	0.0005
9	0.0423	-0.0119	0.0513	0.0046	0.0005
10	-0.1537	-0.7696	-0.2859	0.6977	0.0719
11	-0.4581	0.8128	-0.1387	0.8897	0.0927
12	0.4371	0.0445	0.0583	0.1964	0.0207
13	0.9721	-0.2510	-0.0087	1.0081	0.1076
14	0.7254	-0.0679	-0.0142	0.5310	0.0571
15	0.5702	0.0125	0.1057	0.3365	0.0379
16	-0.0590	0.2326	0.0448	0.0596	0.0069
17	-0.0375	0.2691	0.0241	0.0744	0.0086
18	0.0662	0.3645	0.0641	0.1414	0.0170
19	-0.0289	0.0334	-0.0033	0.0020	0.0002
20	0.3709	-0.1190	-0.0648	0.1559	0.0189
21	0.2853	-0.3474	0.1002	0.2121	0.0262
22	0.0757	-0.0195	-0.0610	0.0098	0.0012
23	0.0653	-0.0212	0.0499	0.0072	0.0009
24	0.4605	-0.4798	0.1975	0.4812	0.0614
25	0.0798	-0.0735	0.0236	0.0123	0.0016
26	0.1078	-0.0033	0.0113	0.0118	0.0015
27	-0.3412	0.4467	0.0243	0.3166	0.0418
28	-0.3025	-0.3646	0.0513	0.2271	0.0304
29	0.1804	0.3231	0.3914	0.2901	0.0389
30	0.2303	-0.1734	0.1013	0.0934	0.0126
31	0.2656	-0.0386	-0.0569	0.0753	0.0103
32	0.0116	-0.0191	-0.0608	0.0042	0.0006
33	-0.4289	-0.0786	-0.2375	0.2465	0.0341
34	0.0125	0.0282	-0.0689	0.0057	0.0008
35	0.1293	0.0638	0.0113	0.0209	0.0029
36	0.1154	-0.2306	0.1949	0.1045	0.0147
37	0.0924	-0.4884	-0.0299	0.2480	0.0354

38	0.2892	-0.1535	-0.0266	0.1079	0.0154
39	0.1616	-0.5672	-0.0223	0.3483	0.0502
40	0.3510	-0.2760	-0.0226	0.1999	0.0292

Standard basis: TZVP (5D, 7F)

SCF Done: E(RPBE1PBE) = -1615.54111796 a.u.

Table 7. BTN-2 Optimization of Ground State Geometry in Chloroform Solvent and Mulliken charges

Standard orientation:						
Center	Atomic	Atomic	Сос	ordinates (Angstroi	ms)	
Number	Number	Туре	Х	Y	Z	
1	6	0	1.839483	-0.579486	0.035037	
2	6	0	1.155212	-1.700340	0.533616	
3	6	0	-0.227636	-1.727048	0.585546	
4	6	0	-1.003491	-0.644574	0.131600	
5	6	0	-0.311584	0.475532	-0.367633	
6	6	0	1.070366	0.512043	-0.408576	
7	6	0	-2.453262	-0.739089	0.203924	
8	6	0	-3.340534	0.194708	-0.205230	
9	6	0	-4.789223	0.121479	-0.144302	
10	6	0	-5.554004	1.189348	-0.643075	
11	6	0	-6.937652	1.186206	-0.618427	
12	6	0	-7.648009	0.088081	-0.084866	
13	6	0	-6.883939	-0.987574	0.428801	
14	6	0	-5.503109	-0.964830	0.394040	
15	7	0	-9.018241	0.061248	-0.066638	
16	6	0	-9.709476	-1.029177	0.581816	
17	6	0	-9.764128	1.216700	-0.508552	
18	6	0	3.303747	-0.589673	-0.045340	
19	6	0	4.001558	-1.755944	-0.307448	
20	6	0	5.406318	-1.806034	-0.388783	
21	6	0	6.186920	-0.689404	-0.217114	
22	6	0	5.554458	0.556854	0.066664	
23	6	0	4.105456	0.587708	0.150306	
24	7	0	6.119740	1.742346	0.295520	
25	16	0	4.911721	2.786302	0.596066	
26	7	0	3.633264	1.798689	0.453940	
27	7	0	7.626693	-0.825427	-0.337911	
28	8	0	8.312203	0.179121	-0.247389	
29	8	0	8.080730	-1.948285	-0.526881	
30	1	0	1.716083	-2.547269	0.919399	
31	-	0	-0 728495	-2 602324	0.992591	
32	-	0	-0.863317	1 336086	-0 734330	
33	-	0	1 566687	1 390983	-0.803539	
34	-	0	-2 824718	-1 669691	0.631531	
35	-	0	-2 959769	1 119616	-0 638939	
36	1	0	-5 041925	2 052912	-1 063298	
37	1	0	-7 469404	2.032512	-1 015075	
38	1	0	-7 378677	-1 849830	0.861413	
39	1	0	-/ 966951	-1 817238	0.801413	
40	1	0	-9 462752	-1 993056	0 118599	
-τ0 Δ1	1	0	-9 <u>4</u> 77779	-1 0955/2	1 653702	
41 10	1	0	-10 785//0	-0 880/77	0 /82216	
72	1	0	-9 550660	2 108503	0.402010	
	1	0	-9 5//221	1 /58686	-1 556202	
74	1	0	-10 821/10/	1 00/12/	-0 /3/852	
46	- 1	0	2 451221	-2 671900	-0 295052	
-0	1	0	2.431231	2.071300	022022	

	4	7	-	1		0	5.	900079	 -2.745565	-0.609126
Mulli	ken d	charges:								
1	С	0.054657	25	S	0.647177	_				
2	С	-0.201646	26	Ν	-0.575990					
3	С	-0.245899	27	Ν	0.371758					
4	С	0.140146	28	0	-0.404577					
5	С	-0.231476	29	0	-0.425595					
6	С	-0.182680	30	н	0.192505					
7	С	-0.239251	31	н	0.187188					
8	С	-0.214191	32	н	0.188142					
9	С	0.116594	33	н	0.202460					
10	С	-0.243895	34	н	0.175440					
11	С	-0.241941	35	н	0.178628					
12	С	0.368962	36	н	0.180200					
13	С	-0.240714	37	н	0.183376					
14	С	-0.225726	38	н	0.183831					
15	Ν	-0.508542	39	н	0.181616					
16	С	-0.390425	40	н	0.195273					
17	С	-0.390489	41	н	0.190142					
18	С	0.123324	42	н	0.199073					
19	С	-0.256142	43	н	0.190042					
20	С	-0.194193	44	н	0.195245					
21	С	0.283206	45	н	0.198858					

23 C 0.166611 47 H 0.239348

24 N -0.557108

Standard basis: 6-31G(d) (6D, 7F)

SCF Done: E(RPBE1PBE) = -1615.17170929 a.u.

22 C 0.224821 46 H 0.211858

Table 8. BTN-2 Calculation of excited state geometry in chloroform solvent and dipole moments

Standard orientation:							
Center	Atomic	Atomic	Coordinates (Angstroms)				
Number	Number	Туре	Х	Y	Z		
1	6	0	1.839197	-0.579703	0.021578		
2	6	0	1.154066	-1.704405	0.507519		
3	6	0	-0.228589	-1.732899	0.555353		
4	6	0	-1.003884	-0.646535	0.113598		
5	6	0	-0.311093	0.478772	-0.369256		
6	6	0	1.070568	0.516392	-0.408318		
7	6	0	-2.453761	-0.741339	0.184778		
8	6	0	-3.341923	0.196738	-0.207291		
9	6	0	-4.790783	0.122135	-0.144921		
10	6	0	-5.556881	1.197328	-0.621175		
11	6	0	-6.940223	1.193728	-0.592558		
12	6	0	-7.648026	0.087327	-0.078359		
13	6	0	-6.883397	-0.996249	0.412003		
14	6	0	-5.502900	-0.972531	0.374391		

15	7	0	-9.021070	0.060821	-0.055371
16	6	0	-9.709135	-1.040374	0.573825
17	6	0	-9.766297	1.224795	-0.469193
18	6	0	3.304421	-0.588014	-0.054966
19	6	0	4.006053	-1.752212	-0.311468
20	6	0	5.413175	-1.802551	-0.379957
21	6	0	6.191899	-0.687957	-0.202462
22	6	0	5.555972	0.558645	0.069942
23	6	0	4.104271	0.590473	0.139556
24	7	0	6.122352	1.743295	0.296413
25	16	0	4.909106	2.785892	0.573865
26	7	0	3.626824	1.803439	0.424230
27	7	0	7.635735	-0.827459	-0.308307
28	8	0	8.313800	0.179423	-0.211816
29	8	0	8.077447	-1.955396	-0.491457
30	1	0	1.715415	-2.553556	0.887953
31	1	0	-0.730504	-2.612280	0.952398
32	1	0	-0.863093	1.344608	-0.722708
33	1	0	1.568355	1.402418	-0.784747
34	1	0	-2.825582	-1.677976	0.598394
35	1	0	-2.961532	1.128647	-0.625517
36	1	0	-5.045939	2.068528	-1.026499
37	1	0	-7.473113	2.058330	-0.971587
38	1	0	-7.376841	-1.866547	0.829789
39	1	0	-4.964890	-1.831645	0.765913
40	1	0	-9.464885	-1.994841	0.089425
41	1	0	-9.467222	-1.129374	1.643583
42	1	0	-10.786047	-0.889840	0.482122
43	1	0	-9.548583	2.104651	0.154816
44	1	0	-9.550791	1.487201	-1.513272
45	1	0	-10.834194	1.012894	-0.395137
46	1	0	3.455649	-2.667762	-0.502485
47	1	0	5.914850	-2.739992	-0.592576

Ground to excited state transition electric dipole moments (Au):

state	x	Y	Z	Dip. S.	Osc.
1	3.6855	-0.0362	-0.0141	13.5842	0.5840
2	-2.4230	0.0293	0.0454	5.8736	0.4198
3	-2.0805	0.2382	0.0329	4.3863	0.3282
4	2.6497	-0.1320	0.0536	7.0413	0.5679
5	-0.0589	-0.1153	0.0722	0.0220	0.0019
6	0.0635	-0.0661	0.0259	0.0091	0.0008
7	0.6953	-0.2295	-0.1297	0.5529	0.0511
8	0.0968	-0.0151	-0.0200	0.0100	0.0009
9	-0.0757	-1.1661	-0.2840	1.4462	0.1441
10	0.8787	-0.7157	0.1911	1.3208	0.1355
11	0.5622	0.2410	-0.1613	0.4002	0.0412
12	0.0895	-0.0556	0.0497	0.0136	0.0014
13	0.4179	0.0363	0.0303	0.1769	0.0184
14	0.0771	-0.0909	-0.0012	0.0142	0.0015
15	-0.9960	0.1224	-0.1124	1.0196	0.1123
16	-0.0906	0.2956	0.0518	0.0983	0.0111
17	-0.0653	0.1190	0.0045	0.0184	0.0021
18	0.4412	-0.2478	-0.0475	0.2583	0.0305
19	-0.3249	0.2926	-0.0070	0.1912	0.0233
20	0.0109	0.1551	-0.1278	0.0405	0.0050

210.0502-0.12050.00550.01710.002122-0.41800.5131-0.22380.48810.0612230.1678-0.06540.07620.03830.004824-0.0217-0.0319-0.02700.00220.000325-0.09360.27990.05590.09020.011526-0.21450.2615-0.12110.12910.016627-0.0633-0.9020-0.10160.82790.1068280.07690.14260.04380.02810.003729-0.3875-0.1796-0.14430.20320.0267300.06220.06670.05280.01110.001531-0.34170.18380.04870.15290.0209320.19750.03120.04680.04220.0058330.44400.03730.06050.20210.027734-0.20490.0694-0.49570.29260.0405350.01970.22080.28780.13200.18436-0.0267-0.03640.02000.00240.0003370.3086-0.9008-0.0780.90670.128338-0.1274-0.25360.01860.04870.007040-0.33990.2686-0.0070.18770.0270						
22 -0.4180 0.5131 -0.2238 0.4881 0.0612 23 0.1678 -0.0654 0.0762 0.0383 0.0048 24 -0.0217 -0.0319 -0.0270 0.0022 0.0003 25 -0.0936 0.2799 0.0559 0.9020 0.0115 26 -0.2145 0.2615 -0.1211 0.1291 0.0166 27 -0.0633 -0.9020 -0.1016 0.8279 0.1068 28 0.0769 0.1426 0.0438 0.0281 0.0037 29 -0.3875 -0.1796 -0.1443 0.2032 0.0267 30 0.0622 0.0667 0.0528 0.0111 0.0015 31 -0.3417 0.1838 0.0487 0.1529 0.0209 32 0.1975 0.0312 0.0468 0.0422 0.0058 33 0.4440 0.0373 0.6055 0.2021 0.0277 34 -0.2049 0.0694 -0.4957 0.292	21	0.0502	-0.1205	0.0055	0.0171	0.0021
23 0.1678 -0.0654 0.0762 0.0383 0.0048 24 -0.0217 -0.0319 -0.0270 0.0022 0.0003 25 -0.0936 0.2799 0.0559 0.0902 0.0115 26 -0.2145 0.2615 -0.1211 0.1291 0.0166 27 -0.0633 -0.9020 -0.1016 0.8279 0.1068 28 0.0769 0.1426 0.0438 0.0281 0.0037 29 -0.3875 -0.1796 -0.1443 0.2032 0.0267 30 0.0622 0.0667 0.0528 0.0111 0.0015 31 -0.3417 0.1838 0.0487 0.1529 0.0209 32 0.1975 0.0312 0.0468 0.0422 0.0058 33 0.4440 0.0373 0.0605 0.2021 0.0277 34 -0.2049 0.0694 -0.4957 0.2926 0.0405 35 0.0197 0.2208 0.2878 0.1320<	22	-0.4180	0.5131	-0.2238	0.4881	0.0612
24-0.0217-0.0319-0.02700.00220.000325-0.09360.27990.05590.09020.011526-0.21450.2615-0.12110.12910.016627-0.0633-0.9020-0.10160.82790.1068280.07690.14260.04380.02810.003729-0.3875-0.1796-0.14430.20320.0267300.06220.06670.05280.01110.01531-0.34170.18380.04870.15290.0209320.19750.03120.04680.04220.0058330.44400.03730.06050.20210.027734-0.20490.0694-0.49570.29260.0405350.01970.22080.28780.13200.018436-0.0267-0.03640.02000.00240.0003370.3086-0.9008-0.00780.90670.128338-0.1274-0.25360.01860.08090.011539-0.17830.12970.00680.04870.007040-0.33990.2686-0.00070.18770.0270	23	0.1678	-0.0654	0.0762	0.0383	0.0048
25-0.09360.27990.05590.09020.011526-0.21450.2615-0.12110.12910.016627-0.0633-0.9020-0.10160.82790.1068280.07690.14260.04380.02810.003729-0.3875-0.1796-0.14430.20320.0267300.06220.06670.05280.01110.01531-0.34170.18380.04870.15290.0209320.19750.03120.04680.04220.0058330.44400.03730.06050.20210.027734-0.20490.0694-0.49570.29260.0405350.01970.22080.28780.13200.018436-0.0267-0.03640.02000.00240.0003370.3086-0.9008-0.00780.90670.128338-0.1274-0.25360.01860.08090.011539-0.17830.12970.00680.04870.007040-0.33990.2686-0.00070.18770.0270	24	-0.0217	-0.0319	-0.0270	0.0022	0.0003
26-0.21450.2615-0.12110.12910.016627-0.0633-0.9020-0.10160.82790.1068280.07690.14260.04380.02810.003729-0.3875-0.1796-0.14430.20320.0267300.06220.06670.05280.01110.001531-0.34170.18380.04870.15290.0209320.19750.03120.04680.04220.0058330.44400.03730.06050.20210.027734-0.20490.0694-0.49570.29260.0405350.01970.22080.28780.13200.018436-0.0267-0.03640.02000.00240.0003370.3086-0.9008-0.00780.90670.128338-0.1274-0.25360.01860.08090.011539-0.17830.12970.00680.04870.007040-0.33990.2686-0.00070.18770.0270	25	-0.0936	0.2799	0.0559	0.0902	0.0115
27-0.0633-0.9020-0.10160.82790.1068280.07690.14260.04380.02810.003729-0.3875-0.1796-0.14430.20320.0267300.06220.06670.05280.01110.001531-0.34170.18380.04870.15290.0209320.19750.03120.04680.04220.0058330.44400.03730.06050.20210.027734-0.20490.0694-0.49570.29260.0405350.01970.22080.28780.13200.018436-0.0267-0.03640.02000.00240.0003370.3086-0.9008-0.00780.90670.128338-0.1274-0.25360.01860.08090.011539-0.17830.12970.00680.04870.007040-0.33990.2686-0.00070.18770.0270	26	-0.2145	0.2615	-0.1211	0.1291	0.0166
280.07690.14260.04380.02810.003729-0.3875-0.1796-0.14430.20320.0267300.06220.06670.05280.01110.001531-0.34170.18380.04870.15290.0209320.19750.03120.04680.04220.0058330.44400.03730.06050.20210.027734-0.20490.0694-0.49570.29260.0405350.01970.22080.28780.13200.018436-0.0267-0.03640.02000.00240.0003370.3086-0.9008-0.00780.90670.128338-0.1274-0.25360.01860.08090.011539-0.17830.12970.00680.04870.007040-0.33990.2686-0.00070.18770.0270	27	-0.0633	-0.9020	-0.1016	0.8279	0.1068
29-0.3875-0.1796-0.14430.20320.0267300.06220.06670.05280.01110.001531-0.34170.18380.04870.15290.0209320.19750.03120.04680.04220.0058330.44400.03730.06050.20210.027734-0.20490.0694-0.49570.29260.0405350.01970.22080.28780.13200.018436-0.0267-0.03640.02000.00240.0003370.3086-0.9008-0.00780.90670.128338-0.1274-0.25360.01860.08090.011539-0.17830.12970.00680.04870.007040-0.33990.2686-0.00070.18770.0270	28	0.0769	0.1426	0.0438	0.0281	0.0037
30 0.0622 0.0667 0.0528 0.0111 0.0015 31 -0.3417 0.1838 0.0487 0.1529 0.0209 32 0.1975 0.0312 0.0468 0.0422 0.0058 33 0.4440 0.0373 0.0605 0.2021 0.0277 34 -0.2049 0.0694 -0.4957 0.2926 0.0405 35 0.0197 0.2208 0.2878 0.1320 0.0184 36 -0.0267 -0.0364 0.0200 0.0024 0.0003 37 0.3086 -0.9008 -0.0078 0.9067 0.1283 38 -0.1274 -0.2536 0.0186 0.0489 0.0115 39 -0.1783 0.1297 0.0068 0.0487 0.0070 40 -0.3399 0.2686 -0.0007 0.1877 0.0270	29	-0.3875	-0.1796	-0.1443	0.2032	0.0267
31 -0.3417 0.1838 0.0487 0.1529 0.0209 32 0.1975 0.0312 0.0468 0.0422 0.0058 33 0.4440 0.0373 0.0605 0.2021 0.0277 34 -0.2049 0.0694 -0.4957 0.2926 0.0405 35 0.0197 0.2208 0.2878 0.1320 0.0184 36 -0.0267 -0.0364 0.0200 0.0024 0.0003 37 0.3086 -0.9008 -0.0078 0.9067 0.1283 38 -0.1274 -0.2536 0.0186 0.0809 0.0115 39 -0.1783 0.1297 0.0068 0.0487 0.0070 40 -0.3399 0.2686 -0.0007 0.1877 0.0270	30	0.0622	0.0667	0.0528	0.0111	0.0015
32 0.1975 0.0312 0.0468 0.0422 0.0058 33 0.4440 0.0373 0.0605 0.2021 0.0277 34 -0.2049 0.0694 -0.4957 0.2926 0.0405 35 0.0197 0.2208 0.2878 0.1320 0.0184 36 -0.0267 -0.0364 0.0200 0.0024 0.0003 37 0.3086 -0.9008 -0.0078 0.9067 0.1283 38 -0.1274 -0.2536 0.0186 0.0489 0.0115 39 -0.1783 0.1297 0.0068 0.0487 0.0070 40 -0.3399 0.2686 -0.0007 0.1877 0.0270	31	-0.3417	0.1838	0.0487	0.1529	0.0209
33 0.4440 0.0373 0.0605 0.2021 0.0277 34 -0.2049 0.0694 -0.4957 0.2926 0.0405 35 0.0197 0.2208 0.2878 0.1320 0.0184 36 -0.0267 -0.0364 0.0200 0.0024 0.0003 37 0.3086 -0.9008 -0.0078 0.9067 0.1283 38 -0.1274 -0.2536 0.0186 0.0809 0.0115 39 -0.1783 0.1297 0.0068 0.0487 0.0070 40 -0.3399 0.2686 -0.0007 0.1877 0.0270	32	0.1975	0.0312	0.0468	0.0422	0.0058
34 -0.2049 0.0694 -0.4957 0.2926 0.0405 35 0.0197 0.2208 0.2878 0.1320 0.0184 36 -0.0267 -0.0364 0.0200 0.0024 0.0003 37 0.3086 -0.9008 -0.0078 0.9067 0.1283 38 -0.1274 -0.2536 0.0186 0.0809 0.0115 39 -0.1783 0.1297 0.0068 0.0487 0.0070 40 -0.3399 0.2686 -0.0007 0.1877 0.0270	33	0.4440	0.0373	0.0605	0.2021	0.0277
35 0.0197 0.2208 0.2878 0.1320 0.0184 36 -0.0267 -0.0364 0.0200 0.0024 0.0003 37 0.3086 -0.9008 -0.0078 0.9067 0.1283 38 -0.1274 -0.2536 0.0186 0.0809 0.0115 39 -0.1783 0.1297 0.0068 0.0487 0.0070 40 -0.3399 0.2686 -0.0007 0.1877 0.0270	34	-0.2049	0.0694	-0.4957	0.2926	0.0405
36 -0.0267 -0.0364 0.0200 0.0024 0.0003 37 0.3086 -0.9008 -0.0078 0.9067 0.1283 38 -0.1274 -0.2536 0.0186 0.0809 0.0115 39 -0.1783 0.1297 0.0068 0.0487 0.0070 40 -0.3399 0.2686 -0.0007 0.1877 0.0270	35	0.0197	0.2208	0.2878	0.1320	0.0184
37 0.3086 -0.9008 -0.0078 0.9067 0.1283 38 -0.1274 -0.2536 0.0186 0.0809 0.0115 39 -0.1783 0.1297 0.0068 0.0487 0.0070 40 -0.3399 0.2686 -0.0007 0.1877 0.0270	36	-0.0267	-0.0364	0.0200	0.0024	0.0003
38 -0.1274 -0.2536 0.0186 0.0809 0.0115 39 -0.1783 0.1297 0.0068 0.0487 0.0070 40 -0.3399 0.2686 -0.0007 0.1877 0.0270	37	0.3086	-0.9008	-0.0078	0.9067	0.1283
39 -0.1783 0.1297 0.0068 0.0487 0.0070 40 -0.3399 0.2686 -0.0007 0.1877 0.0270	38	-0.1274	-0.2536	0.0186	0.0809	0.0115
40 -0.3399 0.2686 -0.0007 0.1877 0.0270	39	-0.1783	0.1297	0.0068	0.0487	0.0070
	40	-0.3399	0.2686	-0.0007	0.1877	0.0270

Standard basis: TZVP (5D, 7F)

SCF Done: E(RPBE1PBE) = -1615.55439277 a.u.

BTN-3 Theoretical calculation data supplement :

Table 9. BTN-3 Optimization of ground state geometry in vacuum

	Standard orientation:							
Center	Atomic	Atomic	Со	Coordinates (Angstroms)				
Number	Number	Туре	Х	Y	Z			
1	6	0	-6.826228	-1.792691	0.001813			
2	6	0	-7.528823	-0.606668	0.001769			
3	6	0	-6.809099	0.631810	0.001082			
4	6	0	-5.352518	0.576162	0.000454			
5	6	0	-4.642146	-0.680208	0.000511			
6	6	0	-5.416111	-1.836424	0.001203			
7	7	0	-7.288065	1.879327	0.000913			
8	16	0	-5.984090	2.877956	0.000106			
9	7	0	-4.768430	1.775080	-0.000173			
10	6	0	-0.599990	-0.749746	0.003908			
11	6	0	0.122725	-1.961388	-0.001561			
12	6	0	1.508270	-1.951586	-0.002205			
13	6	0	2.244299	-0.746155	-0.002587			
14	6	0	1.509406	0.461860	0.002886			
15	6	0	0.125914	0.464024	0.008707			
16	6	0	-2.015150	-0.740578	0.004543			
17	6	0	3.700029	-0.811689	-0.003243			
18	6	0	-3.234280	-0.711415	0.005084			
19	6	0	4.559327	0.235235	0.001698			
20	6	0	6.013870	0.190490	-0.009363			
21	6	0	6.742371	1.395687	-0.014706			
22	6	0	8.128650	1.427789	-0.030922			
23	6	0	8.881127	0.229255	-0.057455			
24	6	0	8.154736	-0.989295	-0.031292			
25	6	0	6.770432	-0.999522	-0.015076			
26	7	0	10.260837	0.242889	-0.110116			
27	6	0	11.003914	-1.005373	0.076922			

28	6	0	10.975242	1.507658	0.072047
29	7	0	-8.988964	-0.666970	0.002421
30	8	0	-9.610336	0.392477	0.002239
31	8	0	-9.511804	-1.787062	0.003027
32	1	0	-7.395251	-2.714501	0.002348
33	1	0	-4.920399	-2.800959	0.001273
34	1	0	-0.418473	-2.902605	-0.006475
35	1	0	2.047405	-2.895790	-0.007611
36	1	0	2.032029	1.413265	0.007779
37	1	0	-0.420247	1.402246	0.008894
38	1	0	4.104908	-1.822432	-0.019125
39	1	0	4.146840	1.243650	0.012417
40	1	0	6.199442	2.338591	0.001289
41	1	0	8.628313	2.389081	-0.025783
42	1	0	8.680424	-1.936753	-0.026453
43	1	0	6.265442	-1.961333	0.000615
44	1	0	10.835931	-1.472526	1.080474
45	1	0	10.731068	-1.753542	-0.697458
46	1	0	12.072748	-0.786454	-0.032839
47	1	0	10.682335	2.245530	-0.707304
48	1	0	10.797698	1.974433	1.070534
49	1	0	12.048901	1.313798	-0.043029

Standard basis: 6-31G(d) (6D, 7F)

SCF Done: E(RB3LYP) = -1692.96375710 a.u.

Thermal correction to Gibbs Free Energy = 0.307574

Table 10. BTN-3 Calculation of excited state geometry in vacuum and dipole moments

Standard orientation:								
Center	Atomic	Atomic	Co	Coordinates (Angstroms)				
Number	Number	Туре	Х	Y	Z			
1	6	0	-6.813856	-1.784072	-0.000925			
2	6	0	-7.507057	-0.597568	0.001797			
3	6	0	-6.782687	0.631746	0.003487			
4	6	0	-5.334836	0.568522	0.002255			
5	6	0	-4.632419	-0.685110	-0.000588			
6	6	0	-5.407117	-1.835319	-0.002112			
7	7	0	-7.250846	1.880045	0.006120			
8	16	0	-5.951027	2.855479	0.006952			
9	7	0	-4.748895	1.763407	0.003973			
10	6	0	-0.595616	-0.755588	-0.003714			
11	6	0	0.123569	-1.963520	-0.006522			
12	6	0	1.506081	-1.952284	-0.007417			
13	6	0	2.237455	-0.749525	-0.005701			
14	6	0	1.505289	0.454599	-0.002535			
15	6	0	0.124885	0.455587	-0.001701			
16	6	0	-2.008680	-0.746789	-0.002672			
17	6	0	3.689483	-0.813680	-0.007055			
18	6	0	-3.226531	-0.718547	-0.001720			
19	6	0	4.542326	0.233780	-0.010744			
20	6	0	5.992951	0.190881	-0.011871			
21	6	0	6.717388	1.393239	-0.022443			
22	6	0	8.100332	1.426733	-0.023931			
23	6	0	8.850483	0.231927	-0.018295			
24	6	0	8.128233	-0.983876	-0.001412			
25	6	0	6.747353	-0.995131	0.000047			
26	7	0	10.222759	0.246389	-0.029965			

27	6	0	10.958103	-0.992439	0.050789
28	6	0	10.927544	1.504043	0.025393
29	7	0	-8.960155	-0.648415	0.002847
30	8	0	-9.565443	0.408465	0.005249
31	8	0	-9.483206	-1.756369	0.001215
32	1	0	-7.391033	-2.701913	-0.002164
33	1	0	-4.914527	-2.801628	-0.004276
34	1	0	-0.417949	-2.904669	-0.007989
35	1	0	2.046989	-2.895690	-0.009697
36	1	0	2.027398	1.406633	-0.000263
37	1	0	-0.423614	1.392665	0.000783
38	1	0	4.097182	-1.823689	-0.005748
39	1	0	4.126842	1.241439	-0.014317
40	1	0	6.172861	2.335452	-0.027930
41	1	0	8.600313	2.388577	-0.028670
42	1	0	8.655891	-1.930897	0.012002
43	1	0	6.242874	-1.957468	0.013482
44	1	0	10.748839	-1.540707	0.981156
45	1	0	10.726017	-1.654784	-0.793915
46	1	0	12.027459	-0.777757	0.019332
47	1	0	10.678271	2.143054	-0.832354
48	1	0	10.703772	2.065586	0.944451
49	1	0	12.001957	1.315724	-0.002103

Ground to excited state transition electric dipole moments (Au):

state	Х	Y	Z	Dip. S.	Osc.
1	3.8246	0.0061	0.0008	14.6277	0.6837
2	-3.1095	0.0685	0.0009	9.6739	0.6762
3	-3.1168	-0.3284	-0.0079	9.8222	0.7674
4	0.0000	-0.0000	0.0084	0.0001	0.0000
5	-0.8589	-0.0611	-0.0059	0.7416	0.0633
6	0.2221	-0.0175	-0.0019	0.0496	0.0045
7	0.0001	-0.0002	0.0111	0.0001	0.0000
8	0.0905	-0.1514	-0.0003	0.0311	0.0029
9	0.0077	0.0134	-0.0001	0.0002	0.0000
10	-0.0000	0.0002	-0.0448	0.0020	0.0002
11	1.0201	-0.5727	-0.0046	1.3686	0.1373
12	-0.5421	-0.4678	-0.0040	0.5127	0.0520
13	-0.9117	-0.9460	0.0037	1.7263	0.1779
14	0.2356	-0.0407	0.0043	0.0572	0.0060
15	0.0002	0.0000	0.0149	0.0002	0.0000
16	0.3311	0.2348	0.0021	0.1647	0.0177
17	0.0638	-0.2314	0.0018	0.0576	0.0063
18	0.4259	0.0379	0.0138	0.1830	0.0205
19	-0.1467	0.3115	-0.0029	0.1185	0.0140
20	0.2609	0.4353	0.0112	0.2577	0.0307
21	-0.0000	-0.0000	0.0115	0.0001	0.0000
22	0.0112	-0.0984	-0.0034	0.0098	0.0012
23	0.2321	0.2660	0.0037	0.1246	0.0153
24	0.4151	0.5762	0.0018	0.5044	0.0628
25	-0.0001	-0.0000	0.0308	0.0009	0.0001
26	0.3501	0.1603	0.0018	0.1483	0.0189
27	-0.0001	0.0002	-0.0204	0.0004	0.0001
28	-0.0759	-0.0891	0.0048	0.0137	0.0018
29	-0.0000	0.0001	-0.0101	0.0001	0.0000

30	0.6091	0.1798	0.0065	0.4033	0.0527
31	0.3766	-0.1863	0.1628	0.2030	0.0271
32	0.0010	-0.4933	-0.1686	0.2718	0.0364
33	-0.1847	-0.1904	0.3281	0.1780	0.0239
34	0.0014	-0.5091	-0.0117	0.2593	0.0351
35	0.0008	-0.0039	-0.0113	0.0001	0.0000
36	-0.1515	-0.3911	-0.0002	0.1759	0.0240
37	0.2428	0.4470	-0.0044	0.2588	0.0353
38	-0.0002	-0.0003	-0.0263	0.0007	0.0001
39	-0.0728	-0.2669	0.0004	0.0765	0.0106
40	-0.0001	0.0002	-0.0692	0.0048	0.0007

Standard basis: TZVP (5D, 7F)

SCF Done:E(RPBE1PBE) = -1691.62704981 a.u.

Table 11. BTN-3 Optimization of Ground State Geometry in Chloroform Solvent and Mulliken charges

Standard orientation:						
Center	Atomic	Atomic	Coordinates	(Angstroms)		
Number	Number	Туре	Х	Y	Z	
1	6	0	-6.826228	-1.792691	0.001813	
2	6	0	-7.528823	-0.606668	0.001769	
3	6	0	-6.809099	0.631810	0.001082	
4	6	0	-5.352518	0.576162	0.000454	
5	6	0	-4.642146	-0.680208	0.000511	
6	6	0	-5.416111	-1.836424	0.001203	
7	7	0	-7.288065	1.879327	0.000913	
8	16	0	-5.984090	2.877956	0.000106	
9	7	0	-4.768430	1.775080	-0.000173	
10	6	0	-0.599990	-0.749746	0.003908	
11	6	0	0.122725	-1.961388	-0.001561	
12	6	0	1.508270	-1.951586	-0.002205	
13	6	0	2.244299	-0.746155	-0.002587	
14	6	0	1.509406	0.461860	0.002886	
15	6	0	0.125914	0.464024	0.008707	
16	6	0	-2.015150	-0.740578	0.004543	
17	6	0	3.700029	-0.811689	-0.003243	
18	6	0	-3.234280	-0.711415	0.005084	
19	6	0	4.559327	0.235235	0.001698	
20	6	0	6.013870	0.190490	-0.009363	
21	6	0	6.742371	1.395687	-0.014706	
22	6	0	8.128650	1.427789	-0.030922	
23	6	0	8.881127	0.229255	-0.057455	
24	6	0	8.154736	-0.989295	-0.031292	
25	6	0	6.770432	-0.999522	-0.015076	
26	7	0	10.260837	0.242889	-0.110116	
27	6	0	11.003914	-1.005373	0.076922	
28	6	0	10.975242	1.507658	0.072047	
29	7	0	-8.988964	-0.666970	0.002421	
30	8	0	-9.610336	0.392477	0.002239	
31	8	0	-9.511804	-1.787062	0.003027	
32	1	0	-7.395251	-2.714501	0.002348	
33	1	0	-4.920399	-2.800959	0.001273	
34	1	0	-0.418473	-2.902605	-0.006475	
35	1	0	2.047405	-2.895790	-0.007611	
36	1	0	2.032029	1.413265	0.007779	
37	1	0	-0.420247	1.402246	0.008894	

38	1	0	4.104908	-1.822432	-0.019125
39	1	0	4.146840	1.243650	0.012417
40	1	0	6.199442	2.338591	0.001289
41	1	0	8.628313	2.389081	-0.025783
42	1	0	8.680424	-1.936753	-0.026453
43	1	0	6.265442	-1.961333	0.000615
44	1	0	10.835931	-1.472526	1.080474
45	1	0	10.731068	-1.753542	-0.697458
46	1	0	12.072748	-0.786454	-0.032839
47	1	0	10.682335	2.245530	-0.707304
48	1	0	10.797698	1.974433	1.070534
49	1	0	12.048901	1.313798	-0.043029

Mulliken charges:

1	С	-0.202067	26	Ν	-0.513617
2	С	0.288780	27	С	-0.386916
3	С	0.221858	28	С	-0.387078
4	С	0.243188	29	Ν	0.359572
5	С	-0.001247	30	0	-0.400317
6	С	-0.187330	31	0	-0.422065
7	Ν	-0.560971	32	Н	0.242945
8	S	0.646168	33	Н	0.221700
9	Ν	-0.584240	34	Н	0.199552
10	С	-0.026616	35	н	0.191056
11	С	-0.160873	36	Н	0.192636
12	С	-0.238448	37	Н	0.204237
13	С	0.137748	38	Н	0.177679
14	С	-0.224731	39	Н	0.180336
15	С	-0.156200	40	Н	0.182075
16	С	-0.062766	41	Н	0.183934
17	С	-0.239189	42	Н	0.184295
18	С	0.022478	43	Н	0.183285
19	С	-0.211253	44	Н	0.186770
20	С	0.112691	45	Н	0.197528
21	С	-0.241250	46	Н	0.198867
22	С	-0.240019	47	Н	0.196872
23	С	0.367148	48	Н	0.187754
24	С	-0.238626	49	н	0.198588
25	С	-0.223919			

Standard basis: 6-31G(d) (6D, 7F)

SCF Done: E(RPBE1PBE) = -1691.23547732 a.u.

Table 12. BTN-3 Calculation of excited state geometry in chloroform solvent

Standard	oriontation
Juliuaru	Unemation.

Center	Atomic	Atomic	Coordinates (Angstroms)			
Number	Number	Туре	Х	Y	Z	
1	6	0	-6.826228	-1.792691	0.001813	
2	6	0	-7.528823	-0.606668	0.001769	
3	6	0	-6.809099	0.631810	0.001082	

460 -5.35213 0.576162 0.000454 560 -4.642146 -0.680208 0.000511 660 -5.41611 -1.836424 0.001203 770 -7.280655 1.879327 0.000016 970 -4.768430 2.877956 0.000166 970 -4.768430 1.775080 -0.000173 1060 0.122725 -1.961388 -0.001561 1260 1.508270 -1.951586 -0.002205 1360 2.244299 -0.746155 -0.002387 1460 0.125914 0.464024 0.008707 1660 -2.015150 -0.740578 0.0003243 1860 -3.234280 -0.711415 0.0003243 1860 -3.234280 -0.711415 0.00039243 2060 6.13877 0.235235 0.001698 2160 8.128650 1.427789 -0.003922 2360 8.181127 0.299522 -0.015762 2460 8.154736 -0.999522 -0.015076 2560 0.1027333 0.77622 2860 1.003314 -1.005373 0.076922 2360 8.154736 -0.999522 -0.015076 2670 0.245455 0.076427 29						
5 6 0 -4.642146 -0.680208 0.000511 6 6 0 -5.416111 -1.836424 0.001203 7 7 0 -7.288065 1.879327 0.000913 8 16 0 -5.9849409 2.877956 0.000173 10 6 0 -0.59999 0.744764 0.003308 11 6 0 0.122725 -1.961388 -0.002265 13 6 0 2.24229 -0.746155 -0.0022867 14 6 0 1.508270 -1.951586 -0.0022867 14 6 0 1.25914 0.464024 0.008707 16 6 0 -2.015150 -0.740578 0.004543 17 6 0 3.700029 -0.811689 -0.003243 18 6 0 4.559327 0.235235 0.001698 20 6 0 6.742371 1.395687 -0.014706	4	6	0	-5.352518	0.576162	0.000454
6 6 0 -5.416111 -1.836424 0.001203 7 7 0 -7.288065 1.879327 0.000913 8 16 0 -5.984090 2.877955 0.000105 9 7 0 -4.768430 1.775080 -0.003908 10 6 0 0.122725 -1.961388 -0.001561 12 6 0 1.508270 -1.951586 -0.002285 13 6 0 2.244299 -0.746155 -0.002886 15 6 0 0.125914 0.464024 0.008707 16 6 0 -2.015150 -0.740578 0.0033243 18 6 0 -3.234280 -0.711415 0.000584 19 6 0 6.013870 0.190490 -0.003922 21 6 0 8.81127 0.22555 -0.057455 24 6 0 8.81127 0.23252 -0.010167622	5	6	0	-4.642146	-0.680208	0.000511
7 7 0 -7.288065 1.879327 0.000913 8 16 0 -5.984090 2.877956 0.000106 9 7 0 -4.768430 1.775080 -0.00173 10 6 0 0.159270 -1.951386 -0.002205 13 6 0 2.244299 -0.746155 -0.002287 14 6 0 0.159270 -1.951386 -0.002287 14 6 0 0.125914 0.464024 0.008707 16 6 0 -2.015150 -0.740578 0.004543 17 6 0 3.242420 -0.711415 0.005084 19 6 0 4.559327 0.235235 0.001698 20 6 0 6.13870 0.14706 222 6 0 8.1277 0.235235 0.031292 21 6 0 8.128650 1.427789 -0.030922 -0.01076422 22	6	6	0	-5.416111	-1.836424	0.001203
8 16 0 -5.984090 2.877956 0.0001073 9 7 0 -4.768430 1.775080 -0.003908 10 6 0 0.59990 -0.74746 0.003908 11 6 0 1.508270 -1.951586 -0.002265 13 6 0 2.244299 -0.746155 -0.002287 14 6 0 1.25914 0.464024 0.008707 16 6 0 -2.015150 0.740578 0.004543 17 6 0 3.70029 -0.811689 -0.003243 18 6 0 -3.234280 -0.711415 0.004543 19 6 0 6.501377 0.235235 0.001698 20 6 0 6.13170 0.190490 -0.009363 21 6 0 8.18127 0.229255 -0.057455 24 6 0 8.154736 -9.999252 -0.0517676	7	7	0	-7.288065	1.879327	0.000913
9 7 0 -4.768430 1.775080 -0.00173 10 6 0 -0.599990 -0.749746 0.003908 11 6 0 1.222 1.961388 -0.001561 12 6 0 1.508270 -1.951586 -0.002205 13 6 0 2.244299 -0.746155 -0.002866 15 6 0 0.125914 0.464024 0.008707 16 6 0 -2.015150 -0.740578 0.004543 17 6 0 -3.234280 -0.711415 0.005084 19 6 0 6.742371 1.395687 -0.003962 21 6 0 8.128650 1.427789 -0.031922 23 6 0 8.81127 0.235235 -0.05765 24 6 0 1.677432 -0.999522 -0.015765 24 6 0 1.075758 0.077247 29 7 </td <td>8</td> <td>16</td> <td>0</td> <td>-5.984090</td> <td>2.877956</td> <td>0.000106</td>	8	16	0	-5.984090	2.877956	0.000106
10 6 0 -0.599990 -0.749746 0.003908 11 6 0 0.122725 -1.961388 -0.002505 13 6 0 2.244299 -0.746155 -0.002587 14 6 0 0.1508270 -0.951586 0.002587 14 6 0 0.125914 0.464024 0.008707 16 6 0 -2.015150 -0.740578 0.004543 17 6 0 3.700029 -0.811689 -0.003243 18 6 0 -4.559327 0.232325 0.001698 20 6 0 6.013870 0.190490 -0.039022 23 6 0 8.81127 0.229255 -0.057455 24 6 0 8.81127 0.299952 -0.015076 26 7 0 10.260837 0.242889 -0.110116 27 6 0 1.0975242 1.507658 0.072047	9	7	0	-4.768430	1.775080	-0.000173
1160 0.122725 -1.961388 -0.001561 1260 1.508270 -1.951586 -0.002205 1360 2.24299 -0.746155 -0.002587 1460 1.509406 0.461860 0.002286 1560 -2.2015150 -0.740578 0.004543 1760 3.700029 -0.811689 -0.002243 1860 -3.234280 -0.711415 0.005084 1960 4.559327 0.235235 0.001698 2060 6.013870 0.190490 -0.009363 2160 6.742371 1.395687 -0.014706 2260 8.128650 1.427789 -0.03922 2360 8.128736 -0.982295 -0.031292 2560 6.770432 -0.999522 -0.015076 2670 10.026374 0.022477 2970 -8.988964 -0.666970 0.002241 3080 -9.511804 -1.787062 0.003027 3210 -7.395251 -2.714501 0.002348 3310 -0.418473 -2.902605 -0.006475 3510 2.047405 -2.895790 -0.007611 3610 2.03229 1.4132650 0.01273 3410 -0.418473 -2.902605 -0.0064	10	6	0	-0.599990	-0.749746	0.003908
1260 1.508270 -1.951586 -0.002205 1360 2.244299 -0.746155 -0.002587 1460 1.509406 0.461860 0.002866 1560 -2.015150 -0.740578 0.0002836 1660 -2.015150 -0.740578 0.003243 1860 3.70029 -0.811689 -0.003243 1860 -3.234280 -0.711415 0.005084 1960 4.559327 0.235235 0.001698 2060 6.13870 0.190490 -0.003963 2160 8.128550 1.427789 -0.030922 2360 8.154736 -0.989295 -0.031292 2460 8.154736 -0.9892952 -0.015076 2560 1.003914 -1.005373 0.075922 2860 10.975242 1.507658 0.070477 2970 -8.98964 -0.66970 0.002239 3180 -9.511804 -1.787062 0.003277 3410 -0.420247 1.402246 0.008894 3810 -2.032029 -2.800959 0.001273 3410 -0.420247 1.402246 0.008894 3810 -2.032029 -1.412246 0.008894 3810 -2.032029 -1.413265	11	6	0	0.122725	-1.961388	-0.001561
13 6 0 2.244299 -0.746155 -0.002587 14 6 0 1.509406 0.461860 0.002886 15 6 0 0.125914 0.464024 0.008707 16 6 0 -2.015150 -0.740578 0.004543 17 6 0 3.700029 -0.811689 -0.003243 18 6 0 -3.234280 -0.711415 0.005084 19 6 0 4.559327 0.235235 0.001698 20 6 0 6.013870 0.190490 -0.030922 23 6 0 8.12650 1.427789 -0.030922 24 6 0 8.154736 -0.989295 -0.051765 24 6 0 1.1003914 -1.005373 0.076922 25 6 0 10.975242 1.507658 0.072471 29 7 0 -8.988964 -0.666970 0.002421	12	6	0	1.508270	-1.951586	-0.002205
14 6 0 1.509406 0.461860 0.002886 15 6 0 0.125914 0.464024 0.008707 16 6 0 -2.015150 -0.740578 0.004543 17 6 0 3.700029 -0.811689 -0.003243 18 6 0 -3.234280 -0.711415 0.005084 19 6 0 4.559327 0.23233 0.001698 20 6 0 6.742371 1.395687 -0.014706 22 6 0 8.12650 1.427789 -0.030922 23 6 0 8.154736 -0.299525 -0.014706 24 6 0 8.154736 -0.299525 -0.015076 26 7 0 10.260837 0.242889 -0.110116 27 6 0 10.975242 1.507658 0.072047 29 7 0 -8.988964 -0.666970 0.0022348	13	6	0	2.244299	-0.746155	-0.002587
15 6 0 0.125914 0.464024 0.008707 16 6 0 -2.015150 -0.740578 0.004543 17 6 0 3.700029 -0.811689 -0.003243 18 6 0 -3.234280 -0.711415 0.005084 19 6 0 4.559327 0.235235 0.001698 20 6 0 6.013870 0.190490 -0.003963 21 6 0 8.128650 1.427789 -0.030922 23 6 0 8.154736 -0.989295 -0.031292 24 6 0 8.154736 -0.989295 -0.010576 26 7 0 10.260837 0.242889 -0.110116 27 6 0 11.003914 -1.005373 0.076922 28 6 0 10.975242 1.507658 0.072047 29 7 0 -8.988964 -0.666970 0.002438	14	6	0	1.509406	0.461860	0.002886
16 6 0 -2.015150 -0.740578 0.004543 17 6 0 3.700029 -0.811689 -0.03243 18 6 0 -3.234280 -0.711415 0.005084 19 6 0 4.559327 0.235235 0.001698 20 6 0 6.013870 0.190490 -0.009363 21 6 0 8.128650 1.427789 -0.030922 23 6 0 8.1127 0.239255 -0.057455 24 6 0 8.154736 -0.999295 -0.0107662 26 7 0 10.260837 0.242889 -0.11016 27 6 0 10.075242 1.507658 0.072047 29 7 0 -8.989864 -0.666970 0.002219 31 8 0 -9.511804 -1.787062 0.003027 32 1 0 -7.395251 -2.714501 0.002348	15	6	0	0.125914	0.464024	0.008707
17 6 0 3.700029 -0.811689 -0.003243 18 6 0 -3.234280 -0.711415 0.00584 19 6 0 4.559327 0.235235 0.001698 20 6 0 6.013870 0.190490 -0.009363 21 6 0 6.742371 1.395687 -0.014706 22 6 0 8.128650 1.427789 -0.039922 23 6 0 8.154736 -0.989255 -0.015765 24 6 0 8.154736 -0.989252 -0.015076 26 7 0 10.260837 0.242889 -0.110116 27 6 0 11.003914 -1.005373 0.072047 28 6 0 10.975242 1.507658 0.072047 30 8 0 -9.610336 0.392477 0.002239 31 8 0 -9.511804 -1.787062 0.003027	16	6	0	-2.015150	-0.740578	0.004543
18 6 0 -3.234280 -0.711415 0.005084 19 6 0 4.559327 0.235235 0.001698 20 6 0 6.013870 0.10900 -0.009363 21 6 0 6.742371 1.395687 -0.014706 22 6 0 8.128650 1.427789 -0.030922 23 6 0 8.81127 0.229255 -0.057455 24 6 0 8.154736 -0.999292 -0.011076 26 7 0 10.260837 0.242889 -0.110116 27 6 0 11.003914 -1.005373 0.076922 28 6 0 10.975242 1.507658 0.072047 30 8 0 -9.610336 0.392477 0.002239 31 8 0 -9.511804 -1.787062 0.003027 32 1 0 -0.418473 -2.902605 -0.006475	17	6	0	3.700029	-0.811689	-0.003243
19 6 0 4.559327 0.235235 0.001698 20 6 0 6.013870 0.190490 -0.09363 21 6 0 6.742371 1.395687 -0.014706 22 6 0 8.126650 1.427789 -0.030922 23 6 0 8.81127 0.229255 -0.057455 24 6 0 8.154736 -0.989295 -0.015076 26 7 0 10.260837 0.242889 -0.110116 27 6 0 11.003914 -1.005373 0.076922 28 6 0 10.975242 1.507658 0.072047 29 7 0 -8.988964 -0.666970 0.0022421 30 8 0 -9.610336 0.392477 0.002348 33 1 0 -4.920399 -2.800559 0.001273 34 1 0 -0.418473 -2.902605 -0.006475	18	6	0	-3.234280	-0.711415	0.005084
20 6 0 6.013870 0.190490 -0.009363 21 6 0 6.742371 1.395687 -0.014706 22 6 0 8.128650 1.427789 -0.030922 23 6 0 8.881127 0.292255 -0.057455 24 6 0 8.154736 -0.989295 -0.011207 25 6 0 6.770432 -0.999522 -0.015076 26 7 0 10.260837 0.242889 -0.110116 27 6 0 11.003914 -1.005373 0.076922 28 6 0 10.975242 1.507658 0.072047 29 7 0 -8.98964 -0.666970 0.00221 30 8 0 -9.610336 0.392477 0.002239 31 8 0 -9.511804 -1.787062 0.003027 32 1 0 -0.418473 -2.902605 -0.006475	19	6	0	4.559327	0.235235	0.001698
21 6 0 6.742371 1.395687 -0.014706 22 6 0 8.128650 1.427789 -0.030922 23 6 0 8.81127 0.229255 -0.057455 24 6 0 8.154736 -0.989255 -0.031292 25 6 0 6.770432 -0.999522 -0.015076 26 7 0 10.260837 0.242889 -0.110116 27 6 0 11.003914 -1.005373 0.076922 28 6 0 1.975242 1.507658 0.072047 29 7 0 -8.988964 -0.666970 0.002239 31 8 0 -9.511804 -1.787062 0.003027 32 1 0 -7.395251 -2.714501 0.002348 33 1 0 2.032029 1.413265 0.007779 34 1 0 2.032029 1.413265 0.007779	20	6	0	6.013870	0.190490	-0.009363
22 6 0 8.128650 1.427789 -0.030922 23 6 0 8.881127 0.229255 -0.057455 24 6 0 8.154736 -0.989295 -0.015076 25 6 0 6.770432 -0.999522 -0.015076 26 7 0 10.260837 0.242889 -0.110116 27 6 0 11.003914 -1.005373 0.076922 28 6 0 10.975242 1.507658 0.072047 29 7 0 -8.988964 -0.666970 0.002421 30 8 0 -9.511836 0.392477 0.00239 31 8 0 -9.511804 -1.787062 0.003027 32 1 0 -4.920399 -2.800959 0.001273 34 1 0 -0.418473 -2.902605 -0.006475 35 1 0 2.032029 1.413265 0.00779	21	6	0	6.742371	1.395687	-0.014706
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	22	6	0	8.128650	1.427789	-0.030922
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	23	6	0	8.881127	0.229255	-0.057455
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	24	6	0	8.154736	-0.989295	-0.031292
2670 10.260837 0.242889 -0.110116 27 60 11.003914 -1.005373 0.076922 28 60 10.975242 1.507658 0.072047 29 70 -8.988964 -0.666970 0.002421 30 80 -9.610336 0.392477 0.002239 31 80 -9.511804 -1.787062 0.003027 32 10 -7.395251 -2.714501 0.002348 33 10 -0.418473 -2.902605 -0.006475 34 10 -0.420299 1.413265 0.007779 37 10 2.032029 1.413265 0.007779 37 10 4.104908 -1.822432 -0.019125 39 10 4.104908 -1.822432 -0.019125 39 10 6.199442 2.338591 0.001289 41 10 8.628313 2.389081 -0.025783 42 10 0.265442 -1.961333 0.00615 44 10 0.737068 -1.753542 -0.697458 46 10 12.072748 -0.786454 -0.032839 47 10 10.682335 2.245530 -0.707304 48 10 10.797698 1.974433 1.070534 49 10 12.048901 1.313798 -0.043029	25	6	0	6.770432	-0.999522	-0.015076
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	26	7	0	10.260837	0.242889	-0.110116
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	27	6	0	11.003914	-1.005373	0.076922
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	28	6	0	10.975242	1.507658	0.072047
3080 -9.610336 0.392477 0.002239 31 80 -9.511804 -1.787062 0.003027 32 10 -7.395251 -2.714501 0.002348 33 10 -4.920399 -2.800959 0.001273 34 10 -0.418473 -2.902605 -0.006475 35 10 2.047405 -2.895790 -0.007611 36 10 2.032029 1.413265 0.007779 37 10 -0.420247 1.402246 0.008894 38 10 4.104908 -1.822432 -0.019125 39 10 6.199442 2.338591 0.001289 41 10 8.628313 2.389081 -0.025783 42 10 8.680424 -1.936753 -0.026453 43 10 10.835931 -1.472526 1.080474 45 10 10.731068 -1.753542 -0.697458 46 10 10.682335 2.245530 -0.707304 48 10 10.797698 1.974433 1.070534 49 10 12.048901 1.313798 -0.043029	29	7	0	-8.988964	-0.666970	0.002421
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	30	8	0	-9.610336	0.392477	0.002239
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	31	8	0	-9.511804	-1.787062	0.003027
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	32	1	0	-7.395251	-2.714501	0.002348
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	33	1	0	-4.920399	-2.800959	0.001273
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	34	1	0	-0.418473	-2.902605	-0.006475
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	35	1	0	2.047405	-2.895790	-0.007611
3710-0.4202471.4022460.00889438104.104908-1.822432-0.01912539104.1468401.2436500.01241740106.1994422.3385910.00128941108.6283132.389081-0.02578342108.680424-1.936753-0.02645343106.265442-1.9613330.000615441010.835931-1.4725261.080474451010.731068-1.753542-0.697458461012.072748-0.786454-0.032839471010.6823352.245530-0.707304481010.7976981.9744331.070534491012.0489011.313798-0.043029	36	1	0	2.032029	1.413265	0.007779
38104.104908-1.822432-0.01912539104.1468401.2436500.01241740106.1994422.3385910.00128941108.6283132.389081-0.02578342108.680424-1.936753-0.02645343106.265442-1.9613330.000615441010.835931-1.4725261.080474451010.731068-1.753542-0.697458461012.072748-0.786454-0.032839471010.6823352.245530-0.707304481010.7976981.9744331.070534491012.0489011.313798-0.043029	37	1	0	-0.420247	1.402246	0.008894
39104.1468401.2436500.01241740106.1994422.3385910.00128941108.6283132.389081-0.02578342108.680424-1.936753-0.02645343106.265442-1.9613330.000615441010.835931-1.4725261.080474451010.731068-1.753542-0.697458461012.072748-0.786454-0.032839471010.6823352.245530-0.707304481010.7976981.9744331.070534491012.0489011.313798-0.043029	38	1	0	4.104908	-1.822432	-0.019125
40106.1994422.3385910.00128941108.6283132.389081-0.02578342108.680424-1.936753-0.02645343106.265442-1.9613330.000615441010.835931-1.4725261.080474451010.731068-1.753542-0.697458461012.072748-0.786454-0.032839471010.6823352.245530-0.707304481010.7976981.9744331.070534491012.0489011.313798-0.043029	39	1	0	4.146840	1.243650	0.012417
41108.6283132.389081-0.02578342108.680424-1.936753-0.02645343106.265442-1.9613330.000615441010.835931-1.4725261.080474451010.731068-1.753542-0.697458461012.072748-0.786454-0.032839471010.6823352.245530-0.707304481010.7976981.9744331.070534491012.0489011.313798-0.043029	40	1	0	6.199442	2.338591	0.001289
42108.680424-1.936753-0.02645343106.265442-1.9613330.000615441010.835931-1.4725261.080474451010.731068-1.753542-0.697458461012.072748-0.786454-0.032839471010.6823352.245530-0.707304481010.7976981.9744331.070534491012.0489011.313798-0.043029	41	1	0	8.628313	2.389081	-0.025783
43106.265442-1.9613330.000615441010.835931-1.4725261.080474451010.731068-1.753542-0.697458461012.072748-0.786454-0.032839471010.6823352.245530-0.707304481010.7976981.9744331.070534491012.0489011.313798-0.043029	42	1	0	8.680424	-1.936753	-0.026453
441010.835931-1.4725261.080474451010.731068-1.753542-0.697458461012.072748-0.786454-0.032839471010.6823352.245530-0.707304481010.7976981.9744331.070534491012.0489011.313798-0.043029	43	1	0	6.265442	-1.961333	0.000615
451010.731068-1.753542-0.697458461012.072748-0.786454-0.032839471010.6823352.245530-0.707304481010.7976981.9744331.070534491012.0489011.313798-0.043029	44	1	0	10.835931	-1.472526	1.080474
461012.072748-0.786454-0.032839471010.6823352.245530-0.707304481010.7976981.9744331.070534491012.0489011.313798-0.043029	45	1	0	10.731068	-1.753542	-0.697458
471010.6823352.245530-0.707304481010.7976981.9744331.070534491012.0489011.313798-0.043029	46	1	0	12.072748	-0.786454	-0.032839
481010.7976981.9744331.070534491012.0489011.313798-0.043029	47	1	0	10.682335	2.245530	-0.707304
49 1 0 12.048901 1.313798 -0.043029	48	1	0	10.797698	1.974433	1.070534
	49	1	0	12.048901	1.313798	-0.043029

Ground to excited state transition electric dipole moments (Au):

state	Х	Y	Z	Dip. S.	Osc.
1	4.4531	0.0338	0.0007	19.8312	0.8092
2	-3.3776	0.0641	0.0017	11.4121	0.7491
3	-2.9193	-0.3998	-0.0074	8.6821	0.6390
4	1.4281	0.1456	0.0071	2.0607	0.1604
5	0.5871	-0.0099	-0.0006	0.3448	0.0301
6	-0.0001	0.0001	-0.0072	0.0001	0.0000
7	-0.0453	0.1441	0.0001	0.0228	0.0021

8	0.0472	-0.1287	-0.0004	0.0188	0.0017
9	0.0000	0.0004	0.0060	0.0000	0.0000
10	0.6528	-0.9736	-0.0061	1.3740	0.1342
11	1.1711	0.6868	0.0001	1.8431	0.1814
12	-0.0466	-0.6821	0.0055	0.4674	0.0469
13	0.0000	-0.0001	0.0486	0.0024	0.0002
14	0.0234	-0.2770	0.0067	0.0773	0.0080
15	-0.9457	-0.5245	0.0021	1.1695	0.1217
16	0.0760	-0.0897	0.0033	0.0138	0.0015
17	0.5208	0.1365	0.0130	0.2901	0.0315
18	-0.0001	-0.0001	0.0210	0.0004	0.0000
19	-0.2927	-0.4001	-0.0094	0.2458	0.0285
20	-0.2287	-0.0492	-0.0021	0.0547	0.0065
21	-0.1663	-0.4254	-0.0033	0.2086	0.0254
22	0.2718	0.4980	-0.0024	0.3218	0.0393
23	-0.3081	-0.4536	0.0020	0.3007	0.0370
24	-0.1801	0.0944	0.0028	0.0414	0.0051
25	-0.0000	-0.0002	0.0349	0.0012	0.0002
26	-0.0474	0.1141	-0.0029	0.0153	0.0019
27	0.0000	0.0001	-0.0094	0.0001	0.0000
28	0.4619	-0.2827	0.0030	0.2933	0.0377
29	-0.0009	0.0017	0.0186	0.0003	0.0000
30	0.0874	0.1519	-0.0032	0.0307	0.0040
31	0.3153	-0.5816	0.0221	0.4381	0.0569
32	0.2182	0.2882	0.0145	0.1309	0.0171
33	0.5936	0.7208	0.0233	0.8725	0.1144
34	0.0000	0.0001	-0.0376	0.0014	0.0002
35	0.0000	-0.0002	0.0000	0.0000	0.0000
36	-0.0010	-0.0098	-0.0035	0.0001	0.0000
37	0.0929	0.7554	-0.0030	0.5792	0.0790
38	-0.1201	-0.2483	0.0129	0.0762	0.0104
39	-0.0034	-0.0012	0.0049	0.0000	0.0000
40	0.1363	0.8996	-0.0056	0.8280	0.1148

Standard basis: TZVP (5D, 7F) SCF Done: E(RPBE1PBE) = -1691.64118186 a.u.