Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2023

Supporting Information for

Dopamine coated layered Co_{0.85}Se as an efficient bifunctional oxygen

electrocatalyst

Jin Li^a, Yu Zhang^a, Wenjie Wei^a, Gaochao Fan^a, Zumin Wang^{b, *}, Lingbo Zong^{a, *},

Lei Wang^a

a, Key Laboratory of Eco-chemical Engineering, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, China

b, State Key Laboratory of Biochemical Engineering, Institute of Process Engineering,

Chinese Academy of Sciences, 1 North 2nd Street, Zhongguancun, Haidian District,

Beijing 100190, China

* Corresponding authors. E-mail addresses: wangzm@ipe.ac.cn L. Zong: lingbozong@qust.edu.cn

Fig. S1. (a) SEM and (b) TEM images of CoSe₂.

Fig. S2. SEM image of $CoSe_2$ after dopamine coating.

Fig. S3. (a, b) TEM images of Co_{0.85}Se @NC.

Fig. S4. Raman spectra of Co_{0.85}Se@NC.

Fig. S5. (a) The survey XPS spectra and (b) high resolution C 1s XPS of $Co_{0.85}Se$ @NC.

Fig. S6. High resolution (a) C 1s, (b) N 1s, (c) Co2p and (d) Se 3d XPS of CoSe₂.

Fig. S7. (a) CV curves of $Co_{0.85}$ Se@NC and Pt/C performed in O₂- and N₂-saturated 0.1 M KOH electrolytes .

Fig. S8. Rotating ring disk electrode polarization curves of $Co_{0.85}Se@NC$ and Pt/C.

Fig. S9. Chronoamperometric (i-t) curves of $Co_{0.85}Se@NC$ and Pt/C under 0.8 V (vs.RHE) in 0.1 M KOH.

Fig. S10. Comparison of the over-potentials for $Co_{0.85}Se@NC$, RuO_2 and $CoSe_2$ electrocatalysts at 10 mA cm⁻².

Fig. S11. The cyclic voltammograms (CVs) curves at different scan rates of (a) Co_{0.85}Se@NC, (b) RuO₂ and (c) CoSe₂. (d) LSV curves of Co_{0.85}Se@NC, RuO₂ and CoSe₂ normalized into ECSA.

Fig. S12. Chronoamperometric (i-t) curves of Co_{0.85}Se@NC and RuO₂ under 1.58 V (vs.RHE) in 1 M KOH.

Fig. S13. Chronoamperometric (i-t) curves of Co_{0.85}Se@NC and CoSe₂ under 1.58 V (vs.RHE) in 1 M KOH.

		Samulas	Peak Position	Peak Area
		Samples	(eV)	Ratio
Co ²⁺	2p _{1/2}	Co _{0.85} Se@NC	793.5	8.7 %
		$CoSe_2$	793.4	3.8 %
	2p _{3/2}	Co _{0.85} Se@NC	777.8	11.7 %
		CoSe ₂	778.2	6.2 %
Co ³⁺	20.00	Co _{0.85} Se@NC	796.7	14.2 %
	2p _{1/2}	$CoSe_2$	796.1	10.9 %
	2p _{3/2}	Co _{0.85} Se@NC	780.5	32.0 %
		CoSe ₂	780.7	20.1 %

Table S1. Comparison of peak positions and peak area ratio of Co 2p of $Co_{0.85}Se@NC$ and $CoSe_2$.

	Samples	Peak Position (eV)	Peak Area Ratio
Co-Se	Co _{0.85} Se@NC	54.2	11.4 %
	CoSe ₂	54.5	28.4 %
Se-Se	Co _{0.85} Se@NC	56.1	43.5 %
	CoSe ₂	58.6	50.8 %
Se-O	Co _{0.85} Se@NC	59.7	45.1 %
	CoSe ₂	61.4	20.8 %

Table S2. Comparison of peak positions and peak area ratio of Se 3d of $Co_{0.85}Se@NC$ and $CoSe_{2.}$

Catalyst	Eonset(V vs.RHE)	E _{1/2} (V vs.RHE)	References			
Co _{0.85} Se@NC	1.0	0.85	This work			
Co-N-C SA/HCF	0.928 V	0.801 V	1			
NBCNT-10	0.958 V	0.82 V	2			
3DOM P-Co ₃ O _{4-δ}	0.99 V	0.82 V	3			
Co-pyridinic N-C	0.99 V	0.87 V	4			
PCN-226(Co)	0.83 V	0.75V	5			
Co ₁ -N ₃ PS/HC	1.00 V	0.92V	6			
ZIF-L-Zn@ZIF-67	-	0.86V	7			
CoSe2@NC	0.904 V	0.83 V	8			
MnSe@MWCNT	0.94 V	0.86V	9			
W ₂ N/WC	0.93V	0.81V	10			
Fe ₃ C-Co/NC	0.94V	0.885V	11			
NiFe@C@Co CNFs	0.974V	0.87V	12			
RuCoOx	-	0.855V	13			
Co/Fe/Mo/NC	0.96V	0.84V	14			
Fe ₂ N@BNC-2	0.981V	0.844V	15			
2% Ru-NCO	-	0.88V	16			

Table S3. Comparison of ORR activity of $Co_{0.85}Se@NC$ with other ORR catalysts

before.						
Catalyst	Overpotential/mV (10 mA cm ⁻²)	Electrolyte	References			
Co _{0.85} Se@NC	350	1 MKOH	This work			
CoSe ₂ ⁽⁴⁰⁰⁾ -NC-800	360	1 MKOH	17			
Ni-Co-S/NF	391	1 MKOH	18			
CoPPi nanowires	359	1 MKOH	19			
Ni-Fe-S/rGO	366	1 MKOH	20			
CoS _x @CuMoS ₄	351.4	1 MKOH	21			
CuCo ₃ S ₂ /CC	346	1 MKOH	22			
CS@N-CT	350	1 MKOH	23			
CoSe ₂ @NC	340	1 MKOH	8			
Ir/pyrrolic-N4-G	320	1 MKOH	24			
NiFe@C@Co CNFs	336	1 MKOH	12			
D-Co@NC	488	0.1 MKOH	25			
CoNi@CoCN	340	1 MKOH	26			

Table S4. Comparison of OER activity of $Co_{0.85}$ Se@NC with other catalysts reported

References

- 1. J. Lei, H. Liu, D. Yin, L. Zhou, J. A. Liu, Q. Chen, X. Cui, R. He, T. Duan and W. Zhu, *Small*, 2020, **16**, e1905920.
- 2. P. Wei, X. Li, Z. He, X. Sun, Q. Liang, Z. Wang, C. Fang, Q. Li, H. Yang, J. Han and Y. Huang, *Chem. Eng. J.*, 2021, **422**.
- D. Wang, Y.-P. Deng, Y. Zhang, Y. Zhao, G. Zhou, L. Shui, Y. Hu, M. Shakouri, X. Wang and Z. Chen, *Energy Storage Mater.*, 2021, 41, 427-435.
- 4. Y. Ha, B. Fei, X. Yan, H. Xu, Z. Chen, L. Shi, M. Fu, W. Xu and R. Wu, *Adv. Energy Mater.*, 2020, **10**.
- 5. M. O. Cichocka, Z. Liang, D. Feng, S. Back, S. Siahrostami, X. Wang, L. Samperisi, Y. Sun, H. Xu, N. Hedin, H. Zheng, X. Zou, H. C. Zhou and Z. Huang, J. Am. Chem. Soc., 2020, 142, 15386-15395.
- Y. Chen, R. Gao, S. Ji, H. Li, K. Tang, P. Jiang, H. Hu, Z. Zhang, H. Hao, Q. Qu, X. Liang, W. Chen, J. Dong, D. Wang and Y. Li, *Angew. Chem. Int. Ed.*, 2021, 60, 3212-3221.
- 7. M. Huo, T. Sun, Y. Wang, P. Sun, J. Dang, B. Wang, N. V. R. A. Dharanipragada, A. K. Inge, W. Zhang, R. Cao, Y. Ma and H. Zheng, *J. Mater. Chem. A*, 2022, **10**, 10408-10416.
- 8. K. Ding, J. Hu, J. Luo, W. Jin, L. Zhao, L. Zheng, W. Yan, B. Weng, H. Hou and X. Ji, *Nano Energy*, 2022, **91**.
- 9. H. Singh, M. Marley-Hines, S. Chakravarty and M. Nath, *Journal of Materials Chemistry A*, 2022, **10**, 6772-6784.
- 10. J. Diao, Y. Qiu, S. Liu, W. Wang, K. Chen, H. Li, W. Yuan, Y. Qu and X. Guo, *Adv. Mater.*, 2020, **32**, e1905679.
- 11. C. C. Yang, S. F. Zai, Y. T. Zhou, L. Du and Q. Jiang, *Adv. Funct. Mater.*, 2019, DOI: 10.1002/adfm.201901949.
- 12. X. Chen, J. Pu, X. Hu, Y. Yao, Y. Dou, J. Jiang and W. Zhang, *Small*, 2022, **18**, e2200578.
- C. Zhou, S. Zhao, H. Meng, Y. Han, Q. Jiang, B. Wang, X. Shi, W. Zhang, L. Zhang and R. Zhang, *Nano Lett.*, 2021, 21, 9633-9641.
- 14. S. Li, J. Zhang, Z. Liu, T. Wang, R. Guo, Z. Yang, Y. A. Wu, W. Xu and S. Pan, *Chem. Eng. J.*, 2022, **446**.
- 15. Z. Xie, Q. Li, X. Peng, X. Wang, L. Guo, X. Zhang, Z. Lu, X. Yang, X. Yu and L. Li, *J. Mater. Chem. A*, 2022, **10**, 4191-4199.
- 16. J. Zhang, J. Lian, Q. Jiang and G. Wang, Chem. Eng. J., 2022, 439.
- 17. H. Lu, Y. Zhang, Y. Huang, C. Zhang and T. Liu, ACS Appl. Mater. Interf., 2019, **11**, 3372-3381.
- Y. Gong, Z. Xu, H. Pan, Y. Lin, Z. Yang and J. Wang, *J. Mater. Chem. A*, 2018, 6, 12506-12514.
- H. Du, W. Ai, Z. L. Zhao, Y. Chen, X. Xu, C. Zou, L. Wu, L. Su, K. Nan, T. Yu and C. M. Li, *Small*, 2018, DOI: 10.1002/smll.201801068, e1801068.
- 20. B. Wang, Y. Chen, X. Wang, J. Ramkumar, X. Zhang, B. Yu, D. Yang, M. Karpuraranjith and W. Zhang, *J. Mater. Chem. A*, 2020, **8**, 13558-13571.
- 21. D. C. Nguyen, D. T. Tran, T. L. L. Doan, D. H. Kim, N. H. Kim and J. H. Lee,

Adv. Energy Mater., 2020, **10**.

- C. Mahala, R. Sharma, M. D. Sharma and S. Pande, *ChemElectroChem*, 2019, 6, 5301-5312.
- 23. J. Li, G. Liu, B. Liu, Z. Min, D. Qian, J. Jiang and J. Li, *Electrochim. Acta*, 2018, **265**, 577-585.
- 24. X. Li, Z. Su, Z. Zhao, Q. Cai, Y. Li and J. Zhao, J. Colloid Interf. Sci., 2022, 607, 1005-1013.
- 25. F. Zhang, L. Chen, H. Yang, Y. Zhang, Y. Peng, X. Luo, A. Ahmad, N. Ramzan, Y. Xu and Y. Shi, *Chem. Eng. J.*, 2022, **431**.
- 26. Y.-L. Zhang, Y.-K. Dai, B. Liu, X.-F. Gong, L. Zhao, F. Cheng, J.-J. Cai, Q.-Y. Zhou, B. Liu and Z.-B. Wang, *J. Mater. Chem. A*, 2022, **10**, 3112-3121.