Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2023

NJC

Electronic Supplementary Information

The order of loading affects photocatalytic nitrogen fixation activity of the ternary composites of PdO/Au-TiO₂

Xuejing Wang, Sifan Liu, Ruixiao Ma, Wenwen Yang, Yanmei Chen, Juan Xu and Yanhui Zhang*

College of Chemistry, Chemical Engineering and Environment, Fujian Province Key Laboratory of Morden Analytical Science and Separation Technology, Minnan Normal University, Zhangzhou, 363000, P.R. China

*To whom correspondence should be addressed. E-mail Address: zhangyh@mnnu.edu.cn

1. The calculation formula and details of ICP-OES are as follows:

$$C_{x}(mg/kg) = \frac{C_{0}(mg/L) \times f \times V_{0}(mL) \times 10^{-3}}{m(g) \times 10^{-3}} = \frac{C_{1}(mg/L) \times V_{0}(mL) \times 10^{-3}}{m(g) \times 10^{-3}}$$
(1)

$$C_1(mg/L) = C_0(mg/L) \times f \tag{2}$$

$$W(\%) = \frac{C_x(mg/kg)}{10^6} \times 100\%$$
(3)

Among them, m_0 , V_0 , C_0 , f, C_1 , C_x and W are quality of sample, constant volume, test solution element concentration, dilution multiple, element concentration of digestion solution/original sample solution, sample element concentration and sample element content.

2. The AQEs experiment was performed as follows:

25 mg of PdO/Au-TiO₂ was dispersed in 130 mL mixture of ultrapure water and ethylene glycol (V:V=9:1) and irradiated under a xenon lamp with bandpass filters ($\lambda = 365, 400, 500, 550, 600$ nm, irradiation area 0.0044 m²), the calculation formula and details of AQEs are as follows:

$$N_{photo} = \frac{t(s) \times P(W \bullet m^{-2}) \times S(m^2) \times \lambda(m)}{h(J \bullet s) \times c(m \bullet s^{-1})}$$
(4)

$$AQEs (\%) = \frac{3NH_4^+(mol) \times N_A(mol^{-1})}{N_{photo}} \times 100\%$$
(5)

Among them, t, P, S, λ , h, c and N_A are reaction time, optical power density, irradiation area, the wavelength of incident light, Planck's constant, the speed of light and Avogadro's constant.

Fig. S1. The standard XRD cards of TiO₂, Au and PdO.

Fig. S2. FT-IR spectra of TiO₂, Au-TiO₂, PdO-TiO₂, PdO/Au-TiO₂ and Au/PdO-TiO₂.

Fig. S3. SEM images of pure TiO₂.

NJC

Fig. S4. TEM of Au/PdO-TiO₂ catalysts (a), elemental mapping images showing Ti, O, Au, and Pd elements in the PdO/Au-TiO₂ (b).

Fig. S5. The XPS Survey of Au-TiO₂, PdO-TiO₂, PdO/Au-TiO₂ and Au/PdO-TiO₂ (a), and the high-resolution XPS spectra of Ti 2p (b).

Table S1. The actual load content of PdO and Au in PdO/Au-TiO₂ was measured by ICP-OES.

Sample	m (g)	V ₀ (mL)	Test elements	C ₀ (mg/L)	f	C ₁ (mg/L)	C _x (mg/kg)	W
PdO/Au-TiO ₂	0.0494	10	Au	6.29	10	62.91	12735.04	1.2735
	0.0494	10	Pd	4.56	10	45.58	9225.77	0.9226

Fig. S6. Ammonia nitrogen standard curve.

Fig. S7. The ammonia yield of PdO/Au-TiO₂ with N_2 and Ar atmosphere (a); the ion chromatographic peaks of NH_4^+ (b).

Table S2. The apparent quantum yields of the PdO/Au-TiO₂ composites.

Wavelengh (nm)	365	400	500	550	600
AQEs (%)	20.6	3.2	0	0	0

NJC

Fig. S8. Trends of ciprofloxacin (10 mg/L) photocatalytic degradation and first order kinetic constant fitting diagram of photocatalytic rate of TiO₂, Au-TiO₂, PdO-TiO₂, Au/PdO-TiO₂ and PdO/Au-TiO₂.

Fig. S9. The color difference map of TiO₂, Au-TiO₂, PdO-TiO₂, Au/PdO-TiO₂ and PdO/Au-TiO₂.

Fig. S10. The nitrogen adsorption and desorption curves (a) and pore size distribution (b) of the TiO₂, Au-TiO₂, PdO-TiO₂, PdO/Au-TiO₂ and Au/PdO-TiO₂.

Fig. S11. XRD patterns of PdO/Au-TiO₂ after 4 cycles of experiments.

Fig. S12. Tauc curve of TiO₂ (a) and Valence band XPS spectra (b).

Fig. S13. The effects of electron sacrificial agent (AgNO₃) on the photocatalytic nitrogen fixation activity of PdO/Au-TiO₂ composites.