Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2023

Supporting Information

Metal-Free Synthesis of Ketonitriles via C-F Bond Cleavage

Ge Gao and Zhiping Li*

Department of Chemistry, Renmin University of China, Beijing 100872 (China)

Email: <u>zhipingli@ruc.edu.cn</u>

Contents

1. General information	S 3
2. Synthesis of the substrates 1	S4
3. Synthesis and characterization for the products 3	S 5
4. Synthesis and characterization for the products 4-6	S12
5. References	S14
6. Copies of ¹ H NMR, ¹³ C NMR and ¹⁹ F NMR spectra for all compounds	S15

1. General information

¹H NMR spectra were recorded on Bruker 600 MHz spectrometer and the chemical shifts were reported in parts per million (δ) relative to internal standard TMS (0 ppm) for CDCl₃. The peak patterns are indicated as follows: s, singlet; d, doublet; dd, doublet of doublet; t, triplet; m, multiplet; q, quartet. The coupling constants, *J*, are reported in Hertz (Hz). ¹³C NMR spectra were obtained at Bruker 150 MHz and referenced to the internal solvent signals (central peak is 77.0 ppm in CDCl₃). ¹⁹F NMR spectra were obtained at Bruker 564 MHz. CDCl₃ was used as the NMR solvent. High-resolution mass spectra (HRMS) were acquired on Thermo Q-Exactive instrument (quadrupole mass analyzer) using electrospray ionization mode (ESI). Flash column chromatography was performed over silica gel 200-300. All reagents were weighed and handled in air at room temperature. All chemical reagents were purchased from Alfa, Aldrich, TCI, and J&K and used without further purification.

2. Synthesis of the substrates 1

Method A: For synthesis of 1a-1k.¹

$$\begin{array}{c} O \\ R \end{array} + \begin{array}{c} O \\ O \\ H \end{array} + \begin{array}{c} O \\ O \\ \hline 110 \ ^{\circ}C, \ 12 \ h \end{array} + \begin{array}{c} O \\ CH_{3}CN, \ rt, \ 2 \ h \end{array} + \begin{array}{c} Cul \ (15 \ mol\%) \\ \hline TBHP \ (5.0 \ equiv) \\ \hline CH_{3}CN, \ rt, \ 2 \ h \end{array} + \begin{array}{c} O \\ CH_{3}CN, \ rt, \ rt, \ 2 \ h \end{array} + \begin{array}{c} O \\ CH_{3}CN, \ rt, \$$

Step 1: The substrates α -CF₃ ketones (**1a-1k**) were synthesized according to the literature. To a mixture of the ketone (5.0 mmol) and isopropenyl acetate (25.0 mmol) was added *p*-TsOH·H₂O (0.5 mmol). The resulting mixture was refluxed overnight. The acetone formed was continuously distilled off. The reaction mixture was cooled to room temperature and diluted with ethyl acetate (20.0 mL) and water (30.0 mL). The aqueous layer was extracted with ethyl acetate (2 x 20.0 mL). The combined organic layers were dried over Na₂SO₄ and the solvent was evaporated in vacuo. The resulting crude mixture was purified by column chromatography using silica gel (200-300 mesh size) and petroleum ether/EtOAc (30:1 to 2:1) as the eluent.

Step 2: A flame-dried reaction vessel with a magnetic stirring bar was charged with CF₃SO₂Na (124.8 mg, 0.8 mmol, 4.0 equiv.), CuI (5.7 mg, 0.03 mmol, 0.15 equiv.), enol acetates (0.2 mmol, 1.0 equiv.) and MeCN (1.0 mL) in sequence. After the reaction mixture was cooled to 0 °C using an ice bath, an aqueous solution of TBHP (70% solution in water, 1.0 mmol, 5.0 equiv.) was slowly added dropwise with stirring. The mixture was stirred in the air at room temperature and the progress of the reaction was monitored by TLC (2-12 h). The resulting mixture was concentrated under reduced pressure. After evaporation, the residue was purified by column chromatography using silica gel (200-300 mesh size) and *n*-hexane/CH₂Cl₂ as the eluent.

Method B: For synthesis of 1m-1r.²

$$\begin{array}{c} \mathsf{DMF} (3 \text{ drops}) \\ \mathsf{CF}_3 \\ \mathsf{Et}_3 \mathsf{N} (2.5 \text{ equiv}) \\ \mathsf{DCM}, \text{ rt}, 3-12 \text{ h} \end{array} \xrightarrow{\mathsf{O}} \mathsf{CF}_3 \\ \end{array}$$

To a stirred suspension of 3,3,3-trifluoropropionic acid (1.3 equiv) in dichloromethane (4.0 mL) was added oxalyl chloride (1.2 equiv) followed by three drops of DMF at 0 °C. The reaction mixture was

stirred at room temperature for 3 h. To this solution was added a solution of anilines (1.0 mmol) in dichloromethane (2.0 mL) followed by triethylamine (2.5 equiv) at 0 °C. The reaction mixture was stirred for 12-24 h and then washed with water (3.0 mL) and 1 N HCl (3.0 mL). The organic layer was dried over Na₂SO₄ and evaporated to afford a residue, which was purified by flash column chromatography (petroleum ether/ethyl acetate) to afford trifluoropropanamides.

Method C: For synthesis of 1s-1w.³

$$R-OH + \bigcup_{HO}^{O} CF_{3} \xrightarrow{DMAP (20 \text{ mol}\%)}_{DCC (1.2 \text{ equiv})} \xrightarrow{O}_{RO}^{O} CF_{3}$$

3,3,3-Trifluoropropanoates (**1s-1w**) were synthesized according to the reported literature. To a stirred solution of alcohol in anhydrous CH_2Cl_2 (3.0 mL/mmol) was added 3,3,3-trifluoropropanic acid (1.5 equiv), and DMAP (0.2 equiv). The reaction mixture was cooled to 0 °C and DCC (1.2 equiv) was added. After stirring at 0 °C for 0.5 h, the mixture was warmed to 25 °C and the progress of the reaction was monitored by TLC (3-12 h). After the reaction finished, the mixture was filtered and the filtrate was evaporated in vacuo. The residue was purified by flash chromatography on silica gel to deliver the corresponding α -CF₃ ester as gum.

3. Synthesis and characterization for the products 3

To a Schlenk tube were added α -CF₃ Carbonyls **1** (0.2 mmol), K₂CO₃ (0.5 equiv) and MeCN (1.0 mL) in air at room temperature. Subsequently, aqueous ammonia **2a** (160. 0 µL, 2.0 mmol) was added to the mixture, and the resulting mixture was stirred at 50 °C for 12 h. The organic phase was evaporated under vacuo. The residue was purified by flash column chromatography on silica gel to give the desired products **3**.

3-(4-Bromophenyl)-3-oxopropanenitrile (3a).⁴ (42 mg, 95%). Isolated by column chromatography on silica gel (petroleum ether/ethyl acetate = 3:1, $R_f = 0.5$); ¹H NMR (600 MHz, CDCl₃, ppm) δ 7.79 (d, J = 8.6 Hz, 2H), 7.67 (d, J = 8.6 Hz, 2H), 4.05 (s, 2H); ¹³C NMR (150 MHz, CDCl₃, ppm) δ 186.2, 133.0, 132.6, 130.3, 129.9, 113.4, 29.4; HRMS (ESI) calcd for C₉H₆BrNNaO [M + Na⁺], 245.9525;

found: 245.9522.

3-Oxo-3-(*p*-tolyl)propanenitrile (3b).⁴ (18 mg, 56%). Isolated by column chromatography on silica gel (petroleum ether/ethyl acetate = 3:1, R_f = 0.4); ¹H NMR (600 MHz, CDCl₃, ppm) δ 7.82 (d, *J* = 8.2 Hz, 2H), 7.32 (t, *J* = 8.2 Hz, 2H), 4.05 (s, 2H), 2.44 (s, 3H); ¹³C NMR (150 MHz, CDCl₃, ppm) δ 186.6, 146.0, 131.8, 129.8, 128.6, 113.9, 29.2, 21.8; HRMS (ESI) calcd for C₁₀H₉NNaO [M + Na⁺], 182.0576; found: 182.0577.

3-([1,1'-Biphenyl]-3-yl)-3-oxopropanenitrile (**3c**).⁵ (31 mg, 70%). Isolated by column chromatography on silica gel (petroleum ether/ethyl acetate = 3:1, $R_f = 0.5$); ¹H NMR (600 MHz, CDCl₃, ppm) δ 7.92 (d, J = 8.4 Hz, 2H), 7.67 (d, J = 8.4 Hz, 2H), 7.56 (d, J = 7.6 Hz, 2H), 7.42 (t, J = 7.2 Hz, 2H), 7.37 (d, J = 7.6 Hz, 1H), 4.03 (s, 2H); ¹³C NMR (150 MHz, CDCl₃, ppm) δ 185.6, 146.5, 138.2, 131.9, 128.1, 127.7, 126.7, 126.3, 112.8, 28.4; HRMS (ESI) calcd for C₁₅H₁₁NNaO [M + Na⁺], 244.0733; found: 244.0732.

3-(4-Nitrophenyl)-3-oxopropanenitrile (3d).⁴ (19 mg, 51%). Isolated by column chromatography on silica gel (petroleum ether/ethyl acetate = 3:1, R_f = 0.4); ¹H NMR (600 MHz, CDCl₃, ppm) δ 8.38 (d, J = 8.8 Hz, 2H), 8.12 (t, J = 8.8 Hz, 2H), 4.15 (s, 2H); ¹³C NMR (150 MHz, CDCl₃, ppm) δ 185.9, 151.2, 138.4, 129.6, 124.4, 112.8, 29.9; HRMS (ESI) calcd for C₉H₆N₂NaO₃ [M + Na⁺], 213.0270; found: 213.0268.

3-(4-Fluorophenyl)-3-oxopropanenitrile (3e).⁴ (30 mg, 91%). Isolated by column chromatography on silica gel (petroleum ether/ethyl acetate = 3:1, $R_f = 0.5$); ¹H NMR (600 MHz, CDCl₃, ppm) δ 7.98-

7.96 (m, 2H), 7.21 (t, J = 8.4 Hz, 2H), 4.09 (s, 2H); ¹³C NMR (150 MHz, CDCl₃, ppm) δ 185.7, 166.2 (d, $J_{C-F} = 258.2$ Hz), 131.3 (d, $J_{C-F} = 9.8$ Hz), 130.7 (d, $J_{C-F} = 3.2$ Hz), 116.5 (d, $J_{C-F} = 22.0$ Hz), 113.7, 29.4; ¹⁹F NMR (565 MHz, CDCl₃, ppm) δ -101.6 (s, 1F); HRMS (ESI) calcd for C₉H₆FNNaO [M + Na⁺], 186.0325; found: 186.0324.

3-(4-Chlorophenyl)-3-oxopropanenitrile (3f).⁴ (29 mg, 82%). Isolated by column chromatography on silica gel (petroleum ether/ethyl acetate = 3:1, R_f = 0.5); ¹H NMR (600 MHz, CDCl₃, ppm) δ 7.87 (d, *J* = 8.4 Hz, 2H), 7.51 (d, *J* = 8.6 Hz, 2H), 4.06 (s, 2H); ¹³C NMR (150 MHz, CDCl₃, ppm) δ 185.9, 141.5, 132.5, 129.8, 129.5, 113.4, 29.4; HRMS (ESI) calcd for C₉H₇ClNO [M + H⁺], 180.0210; found: 180.0210.

3-Oxo-3-phenylpropanenitrile (3g).⁴ (28 mg, 95%). Isolated by column chromatography on silica gel (petroleum ether/ethyl acetate = 3:1, R_f = 0.4); ¹H NMR (600 MHz, CDCl₃, ppm) δ 7.92 (d, *J* = 7.6 Hz, 2H), 7.67 (t, *J* = 7.6 Hz, 1H), 7.53 (t, *J* = 8.0 Hz, 2H), 4.11 (s, 2H); ¹³C NMR (150 MHz, CDCl₃, ppm) δ 187.2, 134.7, 134.2, 129.1, 128.4, 113.8, 29.4; HRMS (ESI) calcd for C₉H₇NNaO [M + Na⁺], 168.0420; found:168.0419.

3-(4-Acetylphenyl)-3-oxopropanenitrile (3h).⁴ (19 mg, 51%). Isolated by column chromatography on silica gel (petroleum ether/ethyl acetate = 3:1, R_f = 0.5); ¹H NMR (600 MHz, CDCl₃, ppm) δ 8.08 (d, *J* = 8.6 Hz, 2H), 8.01 (d, *J* = 8.6 Hz, 2H), 4.14 (s, 2H), 2.67 (s, 3H); ¹³C NMR (150 MHz, CDCl₃, ppm) δ 197.1, 186.8, 141.3, 137.2, 128.9, 128.8, 113.4, 29.8, 27.0; C₁₁H₉NNaO₂ [M + Na⁺], 210.0525; found: 210.0524.

3-(Naphthalen-2-yl)-3-oxopropanenitrile (3i).⁴ (36 mg, 92%). Isolated by column chromatography on silica gel (petroleum ether/ethyl acetate = 3:1, R_f = 0.5); ¹H NMR (600 MHz, CDCl₃, ppm) δ 8.37 (s, 1H), 7.96-7.87 (m, 4H), 7.65 (t, *J* = 7.2 Hz, 1H), 7.59 (t, *J* = 7.6 Hz, 1H), 4.20 (s, 2H); ¹³C NMR (150 MHz, CDCl₃, ppm) δ 187.0, 136.0, 132.2, 131.5, 130.6, 129.7, 129.4, 129.1, 127.8, 127.3, 123.3, 114.0, 29.4; HRMS (ESI) calcd for C₁₃H₉NNaO [M + Na⁺], 218.0576; found: 218.0580.

2-Methyl-3-oxo-3-phenylpropanenitrile (3j).⁵ (25 mg, 77%). Isolated by column chromatography on silica gel (petroleum ether/ethyl acetate = 3:1, R_f = 0.5); ¹H NMR (600 MHz, CDCl₃, ppm) δ 7.99 (d, J = 7.6 Hz, 2H), 7.66 (t, J = 7.8 Hz, 1H), 7.53 (d, J = 8.0 Hz, 2H), 4.40 (m, 1H), 1.65 (d, J = 7.2 Hz, 3H); ¹³C NMR (150 MHz, CDCl₃, ppm) δ 190.7, 134.5, 133.7, 129.1, 128.8, 118.1, 33.7, 14.9; HRMS (ESI) calcd for C₁₀H₁₀NO [M + H⁺], 160.0756; found: 160.0756.

3-Oxo-2,3-diphenylpropanenitrile (3k).⁵ (18 mg, 40%). Isolated by column chromatography on silica gel (petroleum ether/ethyl acetate = 3:1, R_f = 0.5); ¹H NMR (600 MHz, CDCl₃, ppm) δ 7.95 (d, J = 7.4 Hz, 2H), 7.60 (d, J = 7.4 Hz, 1H), 7.48-7.44 (m, 4H), 7.40 (t, J = 7.2 Hz, 2H), 7.2 (m, 1H), 5.60 (s, 1H); ¹³C NMR (150 MHz, CDCl₃, ppm) δ 188.9, 134.4, 133.6, 130.4, 129.7, 129.3, 129.2, 129.0, 128.3, 116.5, 46.7; HRMS (ESI) calcd for C₁₅H₁₁NNaO [M + Na⁺], 244.0733; found: 244.0730.

3-Oxobutanenitrile (31).⁶ (7 mg, 41%). Isolated by column chromatography on silica gel (petroleum ether/ethyl acetate = 3:1, R_f = 0.5); ¹H NMR (600 MHz, CDCl₃, ppm) δ 3.54 (s, 2H), 2.35 (s, 3H); ¹³C NMR (150 MHz, CDCl₃, ppm) δ 195.4, 113.9, 32.8, 29.3; HRMS (ESI) calcd for C₄H₅NNaO [M + Na⁺], 106.0263; found: 106.0265.

2-Cyano-*N***-phenylacetamide (3m)**.⁷ (30 mg, 92%). Isolated by column chromatography on silica gel (petroleum ether/ethyl acetate = 2:1, R_f = 0.4); ¹H NMR (600 MHz, DMSO-*d*⁶, ppm) δ 10.30 (s, 1H), 7.54 (d, *J* = 8.4 Hz, 2H), 7.34 (t, *J* = 7.8 Hz, 2H), 7.10 (t, *J* = 8.0 Hz, 1H), 3.39 (s, 2H); ¹³C NMR (150 MHz, DMSO-*d*⁶, ppm) δ 166.2, 143.6, 134.2, 129.2, 124.5, 121.1, 31.9; HRMS (ESI) calcd for C₉H₈N₂NaO [M + Na⁺], 183.0529; found: 183.0530.

2-Cyano-*N***-**(*p***-tolyl)acetamide (3n**).⁸ (32 mg, 93%). Isolated by column chromatography on silica gel (petroleum ether/ethyl acetate = 2:1, $R_f = 0.4$); ¹H NMR (600 MHz, DMSO-*d*⁶, ppm) δ 10.21 (s, 1H), 7.43 (t, *J* = 8.2 Hz, 2H), 7.13 (d, *J* = 8.0 Hz, 2H), 3.87 (s, 2H), 2.26 (s, 3H); ¹³C NMR (150 MHz, DMSO-*d*⁶, ppm) δ 161.2, 136.3, 133.4, 129.7, 119.7, 116.4, 27.1, 20.9; HRMS (ESI) calcd for C₁₀H₁₀N₂NaO [M + Na⁺], 197.0685; found: 197.0686.

N-(4-Chlorophenyl)-2-cyanoacetamide (3o).⁸ (36 mg, 94%). Isolated by column chromatography on silica gel (petroleum ether/ethyl acetate = 2:1, R_f = 0.4); ¹H NMR (600 MHz, DMSO-*d*⁶, ppm) δ 10.43 (s, 1H), 7.57 d, *J* = 8.8 Hz, 2H), 7.39 (d, *J* = 8.8 Hz, 2H), 3.91 (s, 2H); ¹³C NMR (150 MHz, DMSO-*d*⁶, ppm) δ 161.7, 137.8, 129.3, 128.0, 121.3, 116.3, 27.2; HRMS (ESI) calcd for C₉H₇ClN₂NaO [M + Na⁺], 217.0139; found: : 217.0138.

2-Cyano-N-methyl-N-phenylacetamide (3p).⁷ (33 mg, 96%). Isolated by column chromatography on silica gel (petroleum ether/ethyl acetate = 2:1, $R_f = 0.4$); ¹H NMR (600 MHz, CDCl₃, ppm) δ 7.49 (t, J = 7.8 Hz, 2H), 7.43 (d, J = 6.8 Hz, 1H), 7.25(d, J = 7.4 Hz, 2H), 3.32 (s, 3H), 3.25 (s, 2H); ¹³C NMR (150 MHz, CDCl₃, ppm) δ 161.6, 142.3, 130.4, 128.9, 126.9, 114.1, 37.8, 25.3; HRMS (ESI)

calcd for $C_{10}H_{10}N_2NaO$ [M + Na⁺], 197.0685; found: 197.0685.

N-Benzyl-2-cyanoacetamide (3q).⁷ (33 mg, 95%). Isolated by column chromatography on silica gel (petroleum ether/ethyl acetate = 2:1, R_f = 0.4); ¹H NMR (600 MHz, CDCl₃, ppm) δ 7.36 (t, *J* = 7.2 Hz, 2H), 7.31 (d, *J* = 7.2 Hz, 1H), 7.28 (d, *J* = 7.2 Hz, 2H), 6.44 (s, 1H), 4.47 (d, *J* = 5.6 Hz, 2H), 3.39 (s, 2H); ¹³C NMR (150 MHz, CDCl₃, ppm) δ 160.7, 136.8, 129.0, 128.1, 128.0, 114.6, 44.4, 25.8; HRMS (ESI) calcd for C₁₀H₁₀N₂NaO [M + Na⁺], 197.0685; found: 197.0685.

3-(Isoindolin-2-yl)-3-oxopropanenitrile (3r).⁹ (34 mg, 93%). Isolated by column chromatography on silica gel (petroleum ether/ethyl acetate = 2:1, $R_f = 0.4$); ¹H NMR (600 MHz, DMSO- d^6 , ppm) δ 8.01 (d, J = 8.0 Hz, 1H), 7.26 (d, J = 7.2 Hz, 1H), 7.19 (t, J = 7.8 Hz, 1H), 7.05 (t, J = 7.2 Hz, 1H), 4.18 (s, 2H), 4.05 (t, J = 8.2 Hz, 2H), 3.16 (t, J = 8.4 Hz, 2H); ¹³C NMR (150 MHz, DMSO- d^6 , ppm) δ 161.8, 142.7, 132.4, 127.6, 125.5, 124.5, 116.4, 116.2, 47.9, 27.8, 27.5; HRMS (ESI) calcd for C₁₁H₁₀N₂NaO₃ [M + Na⁺], 209.0685; found: 209.0682.

(1*R*,2*S*,5*R*)-2-Isopropyl-5-methylcyclohexyl 2-cyanoacetate (3s).¹⁰ (41 mg, 91%). Isolated by column chromatography on silica gel (petroleum ether/ethyl acetate = 5:1, R_f = 0.5); ¹H NMR (600 MHz, CDCl₃, ppm) δ 4.79-4.75 (m, 1H), 3.44 (d, *J* = 1.2 Hz, 2H), 2.03-2.00 (m, 1H), 1.88-1.83 (m, 1H), 1.72-1.69 (m, 2H), 1.52-1.42 (m, 2H), 1.10-1.03 (m, 2H), 0.92 (t, *J* = 6.6 Hz, 7H), 0.77 (t, *J* = 7.0 Hz, 3H); ¹³C NMR (150 MHz, CDCl₃, ppm) δ 162.5, 113.2, 77.5, 46.7, 40.5, 34.0, 31.4, 26.3, 25.0, 23.3, 21.9, 20.7, 16.2; HRMS (ESI) calcd for C₁₃H₂₁NNaO₂ [M + Na⁺], 246.1465; found: 246.1463.

((3r,5r,7r)Adamantan-1-yl)methyl 2-cyanoacetate (3t). (45 mg, 97%). Isolated by column

chromatography on silica gel (petroleum ether/ethyl acetate = 5:1, $R_f = 0.5$); ¹H NMR (600 MHz, CDCl₃, ppm) δ 3.80 (s, 2H), 3.48 (s, 2H), 2.00 (s, 3H), 1.73 (d, *J* = 12.6 Hz, 3H), 1.65 (d, *J* = 12.4 Hz, 3H), 1.55 (s, 6H); ¹³C NMR (150 MHz, CDCl₃, ppm) δ 163.0, 113.0, 76.2, 38.9, 36.7, 33.2, 29.6, 27.8, 24.6; HRMS (ESI) calcd for C₁₄H₂₀NO₂ [M + H⁺], 234.1489; found: 234.1476.

(3S,8R,9S,10S,13R,14S,17R)-10,13-Dimethyl-17-(R)-6-methylheptan-2-yl)hexadecahydro-1H-

cyclopenta[*a*]phenanthren-3-yl 2-cyanoacetate (3u). (88 mg, 97%). Isolated by column chromatography on silica gel (petroleum ether/ethyl acetate = 5:1, $R_f = 0.5$); ¹H NMR (600 MHz, CDCl₃, ppm) δ 4.81-4.76 (m, 1H), 3.42(s, 2H), 1.98-1.95(m, 1H), 1.85-1.74 (m, 3H), 1.67-1.40 (m, 8H), 1.37-1.19 (m, 9H), 1.17-0.96 (m, 10H), 0.89 (d, J = 6.6 Hz, 3H), 0.87-0.85 (m, 6H), 0.83 (s, 3H), 0.67 (s, 3H); ¹³C NMR (150 MHz, CDCl₃, ppm) δ 162.4, 113.2, 56.4, 56.3, 54.2, 44.6, 42.6, 40.0, 39.5, 36.6, 36.2, 35.8, 35.5, 35.4, 33.7, 31.9, 28.5, 28.2, 28.0, 27.2, 25.1, 24.2, 23.8, 22.8, 22.6, 21.2, 18.7, 12.2, 12.1; HRMS (ESI) calcd for C₃₀H₄₉NNaO₂ [M + Na⁺], 478.3656; found: 478.3655.

(3*S*,8*R*,9*S*,10*S*,13*S*,14*S*)-10,13-Dimethyl-17-oxohexadecahydro-1*H*-cyclopenta[*a*]phenanthren-3-yl 2-cyanoacetate. (3v) (69 mg, 97%). Isolated by column chromatography on silica gel (petroleum ether/ethyl acetate = 5:1, R_f = 0.5); ¹H NMR (600 MHz, CDCl₃, ppm) δ 4.82-4.76 (m, 1H), 3.44(s, 2H), 2.46-2.41(m, 1H), 2.10-2.04 (m, 1H), 1.95-1.86 (m, 2H), 1.82-1.76 (m, 3H), 1.68-1.63 (m, 2H), 1.60-1.42 (m, 4H),1.37-1.18 (m, 6H), 1.08-1.02 (m, 2H), 0.86 (s, 6H), 0.74-0.70 (m, 1H); ¹³C NMR (150 MHz, CDCl₃, ppm) δ 162.3, 113.1, 76.5, 54.1, 51.2, 47.7, 44.5, 36.4, 35.7, 35.5, 34.9, 33.5, 31.4, 30.6, 28.1, 27.0, 25.0, 21.7, 20.4, 13.7, 12.1; HRMS (ESI) calcd for C₂₂H₃₁NNaO₃ [M + Na⁺], 380.2196; found: 380.2192.

(8R,9S,13S,14S,17R)-3-Methoxy-13-methyl-7,8,9,11,12,13,14,15,16,17-decahydro-6H-

cyclopenta[*a*]**phenanthren-17-yl 2-cyanoacetate (3w)**. (68 mg, 96%). Isolated by column chromatography on silica gel (petroleum ether/ethyl acetate = 5:1, $R_f = 0.5$); ¹H NMR (600 MHz, CDCl₃, ppm) δ 7.19 (d, J = 8.4 Hz, 1H), 6.73-6.70 (m, 1H), 6.63 (s, 1H), 4.77 (t, J = 8.6 Hz, 1H), 3.78 (s, 3H), 3.46 (s, 2H), 2.88-2.84 (m, 2H), 2.32-2.19 (s, 3H), 1.92-1.88 (m, 2H), 1.78-1.76 (m, 1H), 1.64-1.60 (m, 2H), 1.44-1.18 (m, 5H), 0.80 (s, 3H); ¹³C NMR (150 MHz, CDCl₃, ppm) δ 162.9, 157.5, 137.8, 132.2, 126.4, 113.9, 113.1, 111.5, 85.5, 55.2, 49.6, 43.7, 43.2, 38.5, 36.8, 29.7, 27.4, 27.2, 26.1, 24.9, 23.2, 12.0; HRMS (ESI) calcd for C₂₂H₂₇NNaO₃ [M + Na⁺], 376.1883; found: 376.1867.

4. Synthesis and characterization for the products 4-6.

Method D: For synthesis of 4.¹¹

5-Phenyl-1*H*-pyrazol-3-amine **4** were synthesized according to the reported literature. Benzoylacetonitrile (2.0 mmol, 1.0 equiv), hydrazine (2.6 mmol, 1.3 equiv), MeOH (1.0 mL) were heated under microwave conditions (100 W, 70 °C) for 15 min. After the reaction was completed (monitored by TLC), the reaction mixture was concentrated under vacuum. The residue was purified by chromatography on silica gel to give the product **4**.

5-Phenyl-1*H***-pyrazol-3-amine (4)**.¹¹ (30 mg, 94%). Isolated by column chromatography on silica gel (petroleum ether/ethyl acetate = 5:1, R_f = 0.6); ¹H NMR (600 MHz, DMSO- d^6 , ppm) δ 7.67 (d, *J* = 7.6 Hz, 2H), 7.37 (t, *J* = 7.4 Hz, 2H), 7.26 (t, *J* = 7.2 Hz, 1H), 5.79 (s, 1H); ¹³C NMR (150 MHz, DMSO- d^6 , ppm) δ 153.6, 145.9, 132.5, 129.1, 127.7, 125.2, 87.8; HRMS (ESI) calcd for C₉H₁₀N₃ [M + H⁺],

160.0869; found: 160.0886.

Method E: For synthesis of 5.¹²

Methyl 2-oxo-2-phenylacetate **5** were synthesized according to the reported literature. Benzoylacetonitrile (1.0 mmol) and PIDA (2.2 mmol) were dissolved in EtOH (8.0 mL) and stirred under refluxing for 1 h. After the reaction was completed (monitored by TLC), the reaction mixture was concentrated under vacuum. The residue was purified by chromatography on silica gel (20:1 petroleum ether/EtOAc) to give the product **5**.

Methyl 2-oxo-2-phenylacetate (5).¹² (30 mg, 86%). Isolated by column chromatography on silica gel (petroleum ether/ethyl acetate = 10:1, R_f = 0.5); ¹H NMR (600 MHz, CDCl₃, ppm) δ 8.01 (t, *J* = 7.4 Hz, 2H), 7.65 (t, *J* = 7.2 Hz, 1H), 7.51 (t, *J* = 8.0 Hz, 2H), 4.47-4.43 (m, 2H), 1.41 (t, *J* = 7.2 Hz, 3H); ¹³C NMR (150 MHz, CDCl₃, ppm) δ 186.5, 163.9, 134.9, 132.5, 130.0, 128.9, 62.3, 14.1; HRMS (ESI) calcd for C₁₀H₁₀NaO₃ [M + Na⁺], 201.0522; found: 201.0521.

Method F: For synthesis of 6.¹³

3-Oxo-3-phenylpropanamide **6** were synthesized according to the reported literature. Benzoylacetonitrile (1.0 mmol), acetaldoxime (2.0 mmol), $Pd(OAc)_2$, (10 mol %) and PPh_3 (20 mol %) were dissolved in H₂O/EtOH (1:4), and stirred under refluxing for 3 h. After the reaction was completed (monitored by TLC), the reaction mixture was concentrated under vacuum. The residue was purified by chromatography on silica gel to give the product **6**.

3-Oxo-3-phenylpropanamide (6)¹³ (25 mg, 77%). Isolated by column chromatography on silica gel (petroleum ether/ethyl acetate = 1:1, R_f = 0.3); ¹H NMR (600 MHz, CDCl₃, ppm) δ 7.99 (d, *J* = 7.6 Hz, 2H), 7.63 (t, *J* = 7.2 Hz, 1H), 7.50 (t, *J* = 7.8 Hz, 2H), 3.98 (s, 2H); ¹³C NMR (150 MHz, CDCl₃, ppm) δ 195.7, 168.1, 136.1, 134.2, 128.9, 128.6, 45.1; HRMS (ESI) calcd for C₉H₁₀NO₂ [M + H⁺], 164.0706; found: 164.0702.

5. References

- 1 (a) Q. Lu, C. Liu, Z. Huang, Y. Ma, J. Zhang and A. Lei, Relay cooperation of K₂S₂O₈ and O₂ in oxytrifluoromethylation of alkenes using CF₃SO₂Na. *Chem. Commun.*, 2014, **50**, 14101-14104. (b) Y. Lu, Y. Li, R. Zhang, K. Jin and C. Duan, Highly efficient Cu(I)-catalyzed trifluoromethylation of aryl(heteroaryl) enol acetates with CF₃ radicals derived from CF₃SO₂Na and TBHP at room temperature. *J. Fluor. Chem.*, 2014, **161**, 128-133. (c) A. Deb, S. Manna, A. Modak, T. Patra, S. Maity and D. Maiti, Oxidative trifluoromethylation of unactivated olefins: an efficient and practical synthesis of alpha-trifluoromethyl-substituted ketones. *Angew. Chem. Int. Ed.*, 2013, **52**, 9747-9750. (d) R. Tomita, Y. Yasu, T. Koike and M. Akita, Combining photoredox-catalyzed trifluoromethylation and oxidation with DMSO: facile synthesis of alpha-trifluoromethylated ketones from aromatic alkenes. *Angew. Chem. Int. Ed.*, 2014, **53**, 7144-7148.
- 2 X. Du, W. M. Zhang, X. G. Zhang and H. Y. Tu, Palladium-Catalyzed Selective C-F Bond Cleavage of Trifluoropropanamides Leading to (Z)-N-α-Fluorovinylindoles. Adv. Synth. Catal., 2022, 364, 2546-2550.
- A. Joliton, J. M. Plancher and E. M. Carreira, Formation of alpha-SF₅-Enolate Enables Preparation of 3-SF₅-Quinolin-2-ones, 3-SF₅-Quinolines, and 3-SF₅-Pyridin-2-ones: Evaluation of their Physicochemical Properties. *Angew. Chem. Int. Ed.*, 2016, 55, 2113-2117.
- 4 J. Shen, D. Yang, Y. Liu, S. Qin, J. Zhang, J. Sun, C. Liu, C. Liu, X. Zhao, C. Chu and R. Liu, Copper-Catalyzed Aerobic Oxidative Coupling of Aromatic Alcohols and Acetonitrile to β-Ketonitriles. *Org. Lett.*, 2014, 16, 350-353.
- 5 F. Wang, T. Yang, T. Wu, L.-S. Zheng, C. Yin, Y. Shi, X.-Y. Ye, G.-Q. Chen and X. Zhang, Asymmetric Transfer Hydrogenation of α-Substituted-β-Keto Carbonitriles via Dynamic Kinetic Resolution. J. Am. Chem. Soc., 2021, 143, 2477-2483.
- 6 R. R. Sauers and S. D. Van Arnum, A convenient preparation of 3-acetyl-5-methylisoxazole. J. Heterocyclic Chem., 2003, 40, 655-658.

- 7 N. Y. Gorobets, B. H. Yousefi, F. Belaj and C. O. Kappe, Rapid microwave-assisted solution phase synthesis of substituted 2-pyridone libraries. *Tetrahedron*, 2004, **60**, 8633-8644.
- 8 E. C. Truong, P. W. Phuan, A. L. Reggi, L. Ferrera, L. J. V. Galietta, S. E. Levy, A. C. Moises, O. Cil, E. Diez-Cecilia, S. Lee, A. S. Verkman and M. O. Anderson, Substituted 2-Acylaminocycloalkylthiophene-3-carboxylic Acid Arylamides as Inhibitors of the Calcium-Activated Chloride Channel Transmembrane Protein 16A (TMEM16A). J. Med. Chem., 2017, 60, 4626-4635.
- 9 T. Zhou, Y. Wang, B. Li and B. Wang, Rh(III)-Catalyzed Carbocyclization of 3-(Indolin-1-yl)-3oxopropanenitriles with Alkynes and Alkenes through C-H Activation. *Org. Lett.*, 2016, **18**, 5066-5069.
- 10 P. Krasik, Synthesis of sterically hindered esters via titanium catalyzed transesterification. *Tetrahedron Lett.*, 1998, **39**, 4223-4226.
- 11 M. Kelada, J. M. D. Walsh, R. W. Devine, P. McArdle and J. C. Stephens, Synthesis of pyrazolopyrimidinones using a "one-pot" approach under microwave irradiation. *Beilstein J. Org. Chem.*, 2018, 14, 1222-1228.
- 12 Y. Xie, J. Liu, Y. Huang and L. Yao, A novel method for synthesis of α-keto esters with phenyliodine(III) diacetate. *Tetrahedron Lett.*, 2015, **56**, 3793-3795.
- 13 E. S Kim, H. S. Kim and J. N. Kim, An efficient Pd-catalyzed hydration of nitrile with acetaldoxime. *Tetrahedron Lett.*, 2009, **50**, 2973-2975.

6. Copies of ¹H NMR and ¹³C NMR spectra for all compounds.

200	180	160	140	120	100	80	60	40	20	ppm		
		••••••••••••••••••••••••••••••••••••••										
											SF01 NUC1 P1 SI SF WDW SSB LB GB PC	CHANNEL f1 ===== 150.9279571 N 13C 11.90 N 32768 150.9128665 N EM 0 1.00 H 0 1.40
	Br	CN 3a									INSTRUM PROBHD PULPROG TD SOLVENT NS DS SWH FIDRES AQ RG DW DE TE D1 D1 D11 TD0	spect 5 mm PABBO BB/ zgpg30 65536 CDC13 1024 4 36057.691 H 0.550197 H 0.9088159 s 190.02 13.867 u 6.50 u 298.0 H 2.00000000 s 0.03000000 s
			132.9	~ 129.8 113.4					29.38		NAME EXPNO PROCNO Date_ Time	GG-508P-20220505 2 1 20220506 6.30

186.59	145.97 131.82 128.58 128.58 113.89 113.89		29.23	NAME GG-585P-20220611 EXPNO 2 PROCNO 1
				Date_ 20220611 Time 12.39 INSTRUM spect
				PROBHD 5 mm PABBO BB/ PULPROG zgpg30
Q				SOLVENT CDC13 NS 1024
CN				DS 4 SWH 36057.691 Hz
Me 3b				FIDRES 0.550197 Hz AQ 0.9088159 sec
WC 2.3				RG 190.02 DW 13.867 usec
				DE 6.50 usec TE 298.0 K
				D1 2.0000000 sec D11 0.0300000 sec
				TD0 1
				====== CHANNEL f1 ======= SF01 150.9279571 MHz
				NUC1 13C P1 11.90 usec
				SI 32768 SF 150 9128718 MHz
				WDW EM
				LB 1.00 Hz
				PC 1.40
· · · · · · · · · · · · · · · · · · ·		· · · · · · · · · · · · · · · · · · ·	· · · · ·	
200 180 160	140 120 10	0 80 60	40 20 ppm	

196.31		129.32 123.88				27.00	NAME EXPNO PROCNO Date_ Time INSTRUM PROBHD	GG-694-1P-20221029 2 1 20221030 4.59 spect 5 mm PABBO BB/
O ₂ N 3d	CN						PULPROG TD SOLVENT NS DS SWH FIDRES AQ RG DW DE TE D1 D1 D11 TD0	zgpg30 65536 CDC13 1024 4 36057.691 Hz 0.550197 Hz 0.9088159 sec 190.02 13.867 usec 6.50 usec 298.0 K 2.0000000 sec 0.0300000 sec 1
							SF01 NUC1 P1 SI SF WDW SSB LB GB PC	CHANNEL f1 ======== 150.9279571 MHz 11.90 used 32768 150.9128665 MHz EM 0 1.00 Hz 0 1.40
		······	·	·/	 '	,,		

F 36 BF 7.561 − BF 7.651 − BF 7.651 − BF 7.651 −	131.36 131.30 130.76 130.74 130.74 116.57	29.40	N. E P D T T I P T T S S S S S S T T T D D T T T	AME GG-646P-20220707 XPNO 2 ROCNO 1 ate_ 20220707 ime 13.35 NSTRUM spect ROBHD 5 mm PABBO BB/ ULPROG zgpg30 D 65536 OLVENT CDC13 S 1024 S 4 WH 36057.691 JDRES 0.550197 Q 0.9088159 GG 190.02 W 13.867 E 6.50 E 298.9 I 2.00000000 Sec 11 0.03000000 sec D 1
			S N P S S U S L I G G	====== CHANNEL f1 ====== FO1 150.9279571 MHz UC1 13C 1 11.90 usec I 32768 F 150.9128665 MHz DW EM SB 0 B 1.00 Hz B 0 C 1.40

	9. 4			
	- 101		NAME EXPNO PROCNO	GG-786P-20230206 2 1
			Date_	20230206
0			INSTRUM	spect
			PROBHD	5 mm PABBO BB/
CN			TD	131072
			SOLVENT	CDC13
F'			DS	4
3e			SWH	133928.578 Hz
			FIDRES	1.021794 Hz 0 4893855 sec
			RĜ	190.02
			DW	3.733 usec
			TE	298.0 K
			D1	1.00000000 sec
			TDU	Ţ
				CHANNEL fl =======
			SFO1 NUC1	564.6675534 MHz 19F
			P1	12.00 usec
			SI	65536
			WDW	EM
			SSB	0
			LB GB	0.30 Hz
			PC	1.00
	k			
U -2U -4U -6	30 -80 -100 -120 -1	140 –160 –180 ppm		

$\mathbf{r}_{\mathbf{r}} = \mathbf{r}_{\mathbf{r}} \mathbf{r}_{\mathbf{r}} \mathbf{r}_{\mathbf{r}}$	- 137.7 - 129.3 129.3 121.5 121.5			27.2	EXPNO PROCNO Date_ Time INSTRUM PROBHD PULPROG TD SOLVENT NS DS SWH FIDRES AQ RG DW DE TE D1 D11 TD0 SF01 NUC1 P1 SI SF WDW SSB LB	2 1 20220917 13.22 spect 5 mm PABBO BB/ 2gpg30 65536 DMSO 1024 4 36057.691 Hz 0.9088159 sec 190.02 13.867 usec 6.50 usec 298.0 K 2.00000000 sec 0.03000000 sec 1 = CHANNEL f1 ======= 150.9279571 MHz 12020917 150.9279571 MHz 1300 usec 32768 150.9128665 MHz EM 0 1.00 Hz
		100 80	60 40	20 0 ppm	GB PC	0 1.40

St. 787 St. 79	134.68 134.20 129.09 128.40		29.38	NAME EXPNO PROCNO Date_ Time INSTRUM PROBHD PULPROG TD SOLVENT NS DS SWH FIDRES AQ RG DW DE TE D1 D11 TD0 ======== SF01 NUC1 P1	GG-586P-20220611 2 1 20220611 13.39 spect 5 mm PABBO BB/ 2gpg30 65536 CDC13 1024 4 36057.691 Hz 0.550197 Hz 0.9088159 sec 190.02 13.867 usec 6.50 usec 298.0 K 2.00000000 sec 0.03000000 sec 1 CHANNEL f1 ======= 150.9279571 MHz 13C 1 90 usec
200 180 160		100 80	 20 ppm	SI SF WDW SSB LB GB PC	11.30 usec 32768 150.9128799 MHz EM 0 1.00 Hz 0 1.40

0.791 0.791 0.798 0.798 0.798 0.798 0.798 0.798 0.798 0.798 0.798 0.798 0.798 0.798 0.798 0.798 0.798 0.798 0.798 0.797 0.798 0.797	141.3 137.1 137.1 128.9 128.7 113.3	29.76	NAME GG-692-2P-20221027 EXPNO 2 PROCNO 1 Date_ 20221028 Time 3.06 INSTRUM spect PROBHD 5 mm PABBO BB/ PULPROG zgpg30 TD 65536 SOLVENT CDC13 NS 1024 DS 4 SWH 36057.691 FIDRES 0.550197 AQ 0.9088159 RG 190.02 DW 13.867 DE 6.50 TE 298.0 MD1 2.0000000 D1 0.03000000
			TD0 1 ====== CHANNEL f1 ======= SF01 150.9279571 MHz NUC1 13C P1 11.90 usec SI 32768 SF 150.9128665 MHz WDW EM SSB 0 LB 1.00 Hz GB 0 PC 1.40
200 180 160) 140 120 100	80 60 40 20	ppm

SFO1 150.927971 MB: NUC1 150.927971 MB: NUC1 150.927971 MB: SF 150.912821 MB: WDW EM SSB 0 LB 1.00 Hz GB 0 PC 1.40	136.04 131.52 131.52 129.66 129.44 129.08 127.33 113.98 113.98	29.41	NAME EXPNO PROCNO Date_ Time INSTRUM PROBHD PULPROG TD SOLVENT NS DS SWH FIDRES AQ RG DW DE TE D1 D1 D11 TD0	GG-647P-20220707 2 1 20220707 12.35 spect 5 mm PABBO BB/ 2gpg30 65536 CDC13 800 4 36057.691 Hz 0.550197 Hz 0.9088159 sec 190.02 13.867 usec 6.50 usec 298.5 K 2.00000000 sec 0.03000000 sec 1
			SF01 NUC1 P1 SI SF WDW SSB LB GB PC	= CHANNEL f1 ====== 150.9279571 MHz 13C 11.90 usec 32768 150.9128821 MHz EM 0 1.00 Hz 0 1.40

—— 195.36		O CN 3I	I	—— 113.87					29.32		NAME EXPNO PROCNO Date_ Time INSTRUM PROBHD PULPROG TD SOLVENT NS SWH FIDRES AQ RG DW DE TE D1 D11 TD0 ======== SFO1 NUC1 P1 SI SF WDW SSB LB GB	GG-703P-20221031 2 1 20221031 23.18 spect 5 mm PABBO BB/ 2gpg30 65536 CDC13 800 4 36057.691 Hz 0.550197 Hz 0.9088159 sec 190.02 13.867 usec 298.0 K 2.0000000 sec 0.0300000 sec 1 CHANNEL f1 ======= 150.9279571 MHz 13c 1.90 usec 32768 150.9128665 MHz EM 0 1.00 Hz 0
200	180	160	140	120	100	80	60	40	20	ppm	ΡC	1.40

Ph	HN CI	N — 166.21						31.93			NAME EXPNO PROCNO Date_ Time INSTRUM PROBHD PULPROG TD SOLVENT NS DS SWH FIDRES AQ RG DW DE TE D1 D11 TD0 ======== SF01 NUC1 P1 SI SF WDW SSB LB GB PC	GG-569P-3-220607 2 1 20220608 6.45 spect 5 mm PABBO BB/ zgpg30 65536 CDC13 824 4 36057.691 Hz 0.9088159 sec 190.02 13.867 usec 6.50 usec 298.0 K 2.00000000 sec 0.03000000 sec 1 CHANNEL f1 ======= 150.9279571 MHz 12768 150.9128665 MHz EM 0 1.00 Hz 0 1.40
200		ания (рания) при дар партия (уже на ворода) 160	140	120	100			40	20			
200	180	160	140	120	100	80	60	40	20	ppm		

Cl		(CN)							27.24		NAME EXPNO PROCNO Date_ Time INSTRUM PROBHD PULPROG TD SOLVENT NS DS SWH FIDRES AQ RG DW DE TE D1 D11 TD0 ======= SF01 NUC1 P1 SI SF WDW SSB LB GB PC	GG-669P-20220917 2 1 20220917 13.22 spect 5 mm PABBO BB/ 2gpg30 65536 DMSO 1024 4 36057.691 Hz 0.50197 Hz 0.9088159 sec 190.02 13.867 usec 6.50 usec 298.0 K 2.00000000 sec 0.03000000 sec 1 = CHANNEL f1 ======= 150.9279571 MHz 13C 11.90 usec 32768 150.9128665 MHz EM 0 1.00 Hz 0 1.40
200	180	160	140	120	100	80	60	40	20	nom		

Ph、NCN Me 3p	7.504		3.249		NAME EXPNO PROCNO Date_ Time INSTRUM PROBHD PULPROG TD SOLVENT NS DS SWH FIDRES AQ RG DW DE TE D1 TD0	GG-572P-20220609 1 1 20220610 4.10 spect 5 mm PABBO BB/ zg30 65536 CDC13 8 0 9615.385 Hz 0.146719 Hz 3.4079220 sec 44.5 52.000 usec 6.50 usec 298.0 K 1.00000000 sec 1
					SF01 NUC1 P1 SI SF WDW SSB LB GB PC	CHANNEL II ======== 600.1739011 MHz 1H 9.96 usec 65536 600.1699985 MHz EM 0 0.30 Hz 0 1.00
		• • • • • • • • • • • • • • • • •				
11 10 9	6 7 8 5.00 5.00 8 8 8	5 4	3 2 90 50 8 7	1 0 ppm		

	F	^{ph} N ^{Me} 3p	ČN	142.26					37.78	25.35		NAME EXPNO PROCNO Date_ Time INSTRUM PROBHD PULPROG TD SOLVENT NS DS SWH FIDRES AQ RG DW DE TE D1 D11 TD0	GG-572P-20220609 2 1 20220610 5.02 spect 5 mm PABBO BB/ 2gpg30 65536 CDC13 1024 4 36057.691 Hz 0.9088159 sec 190.02 13.867 usec 6.50 usec 298.0 K 2.0000000 sec 0.03000000 sec 1
												SFO1 NUC1 P1 SI SF WDW SSB LB GB PC	E CHANNEL f1 ======= 150.9279571 MHz 13C 11.90 usec 32768 150.9128863 MHz EM 0 1.00 Hz 0 1.40
	200	180	160	140	120	100	80	60	40	20	ppm		

12	11	10	9	2.00 2.00 2.00	2 6 	5 4	2.04 8 8	2 1	ppm		
								lal_	l		
										SF01 NUC1 P1 SI SF WDW SSB LB GB PC	= CHANNEL f1 ======= 600.1739011 MHz 1H 9.96 usec 65536 600.1700147 MHz EM 0 0.30 Hz 0 1.00
Ph	O N H 3	∕CN q		7.36	- 7.26	4.47	3.39			NAME EXPNO PROCNO Date_ Time INSTRUM PROBHD PULPROG TD SOLVENT NS DS SWH FIDRES AQ RG DW DE TE D1 TD0	GG-584P-20220613 1 20220613 21.17 spect 5 mm PABBO BB/ zg30 65536 CDC13 8 0 9615.385 Hz 0.146719 Hz 3.4079220 sec 109.27 52.000 usec 6.50 usec 298.0 K 1.00000000 sec 1

			160.77 160.72	136.77 128.96	128.09 127.97 114.64				44.44	25.84		NAME EXPNO PROCNO Date	GG-584P-20220613 2 1 20220613
		Ph N H	V CN 3q									Time INSTRUM PROBHD PULPROG TD SOLVENT NS DS SWH FIDRES AQ RG	20220013 22.09 spect 5 mm PABBO BB/ zgpg30 65536 CDC13 1024 4 36057.691 Hz 0.550197 Hz 0.9088159 sec 190.02
												DW DE TE D1 D11 TD0	13.867 usec 6.50 usec 298.0 K 2.00000000 sec 0.03000000 sec 1
										1		SF01 NUC1 P1 SI SF WDW SSB LB GB PC	= CHANNEL f1 ====== 150.9279571 MHz 13C 11.90 usec 32768 150.9128665 MHz EM 0 1.00 Hz 0 1.40
وروب وروب وروب وروب وروب وروب وروب وروب		e dan da man da Jana and dan maja ang						unde stal kändensige – giver video-envideo		a de a sus de la constitue de servicie de servic	NT: COMPANY AND IN THE COMPANY AND IN		
An and a second s	200	180	160	140	120	100	80	60	40		ppm		

مر مر 3r			NAME EXPNO PROCNO Date_ Time INSTRUM PROBHD PULPROG TD SOLVENT NS DS SWH FIDRES AQ RG DW DE TE D1 D11 TD0 ======== SF01 NUC1 P1 SI SF WDW SSB LB GB PC	GG-610P-20230202 2 1 20230202 18.14 spect 5 mm PABBO BB/ 2gpg30 65536 DMSO 1024 4 36057.691 Hz 0.550197 Hz 0.9088159 sec 190.02 13.867 usec 298.0 K 2.0000000 sec 0.03000000 sec 1 = CHANNEL f1 ======= 150.9279571 MHz 13C 1.90 usec 32768 150.9128665 MHz EM 0 1.00 Hz 0 1.40

162.48	 77.51	$ \begin{array}{c} - 46.75 \\ - 40.48 \\ - 313.98 \\ - 313.38 \\ - 24.97 \\ - 21.33 \\ - 21.91 \\ - 21.01 \\ - 21.01 \\ - 21.23 \\ - $	NAME EXPNO PROCNO Date_ Time INSTRUM PROBHD PULPROG TD SOLVENT NS DS SWH FIDRES AQ RG DW DE TE D1 D11 TD0	GG-682-1P-20221015 2 1 20221015 16.30 spect 5 mm PABBO BB/ zgpg30 65536 CDC13 1024 4 36057.691 Hz 0.550197 Hz 0.9088159 sec 190.02 13.867 usec 6.50 usec 298.0 K 2.00000000 sec 0.03000000 sec 1
			SFO1 NUC1 P1 SI SF WDW SSB LB GB PC	CHANNEL f1 ======= 150.9279571 MHz 13C 11.90 usec 32768 150.9128665 MHz EM 0 1.00 Hz 0 1.40

SPOI 150.9279571 NUCL 130 SI 32768 WDW EM SSB 0 LB 1.00 GB 0 PC 1.40	Å	Jo 3t	CN		76.15		NAME EXPNO PROCNO Date_ Time INSTRUM PROBHD PULPROG TD SOLVENT NS DS SWH FIDRES AQ RG DW DE TE D1 D1 D11 TD0	GG-594P-20220616 2 1 20220616 11.54 spect 5 mm PABBO BB/ zgpg30 65536 CDC13 1024 4 36057.691 Hz 0.9088159 sec 190.02 13.867 use 6.50 use 298.0 K 2.0000000 sec 1 CUANNUL 61
							SF01 NUC1 P1 SI SF WDW SSB LB GB PC	E CHANNEL 11 ====== 150.9279571 MHz 13C 11.90 use 32768 150.9128796 MHz EM 0 1.00 Hz 0 1.40

$\mathbf{J}_{\mathbf{r}}^{\mathbf{r}}$		NAME GG-608P-20220621 EXPNO 1 PROCNO 1 Date_ 20220621 Time 21.42 INSTRUM spect PROBHD 5 mm PABBO BB/ PULPROG zg30 TD 65536 SOLVENT CDC13 NS 8 DS 0 SWH 9615.385 Hz FIDRES 0.146719 Hz AQ 3.4079220 sec RG 28.69 DW 52.000 usec DE 6.50 usec TE 298.0 K D1 1.00000000 sec TD0 1 TE SF01 600.1739011 MHz NUC1 1H P1 9.96 usec SI 65536 SF 600.1699974 MHz WDW EM SSB 0 LB 0.30 Hz GB 0 PC
 11 10 9 8 7 6	5 4 3 2 1 0 ppm	

12	11	10	9	8 7 8 8 8 8 8	6	5	4	3	2	 0	ppm		
	ł											Date_ Time INSTRUM PROBHD PULPROG TD SOLVENT NS DS SWH FIDRES AQ RG DW DE TE D1 TD0 SF01 NUC1 P1 SI SF WDW SSB LB GB PC	20230202 16.21 spect 5 mm PABBO BB/ zg30 65536 DMSO 8 0 9615.385 Hz 0.146719 Hz 3.4079220 sec 38.1 52.000 usec 6.50 usec 298.0 K 1.00000000 sec 1 = CHANNEL f1 ======= 600.1739011 MHz 1H 9.96 usec 65536 600.1700000 MHz EM 0 0.30 Hz 0 1.00
				7.673 7.660 7.386 7.373 7.361 7.261 7.261	5.791							NAME EXPNO PROCNO	GG-711P-20230202 1 1

H_{2N} H_{2N} H_{2N}			82. 87				NAME EXPNO PROCNO Date_ Time INSTRUM PROBHD PULPROG TD SOLVENT NS DS SWH FIDRES AQ RG DW DE TE D1 D11 TD0 	GG-711P-20230202 2 1 20230202 17.14 spect 5 mm PABBO BB/ 2gpg30 65536 DMSO 1024 4 36057.691 Hz 0.9088159 sec 190.02 13.867 usec 6.50 usec 298.0 K 2.00000000 sec 0.03000000 sec 1 = CHANNEL f1 ======= 150.9279571 MHz 13C 11.90 usec 32768
200 180 160	140 1	20 100	80 60	40	20 0	ppm	SF WDW SSB LB GB PC	150.9128665 MHz EM 0 1.00 Hz 0 1.40

	O	163.858	134.911 132.452 129.8989				62.324		14.096		NAME EXPNO PROCNO Date_ Time INSTRUM PROBHD PULPROG TD SOLVENT	GG-713P-20221111 2 1 20221111 18.11 spect 5 mm PABBO BB/ zgpg30 65536 CDC13
ĺ		.оСH ₃ 5	1								NS DS SWH FIDRES AQ RG DW DE TE D1 D1 D11 TD0	800 4 36057.691 Hz 0.550197 Hz 0.9088159 sec 190.02 13.867 usec 6.50 usec 298.0 K 2.0000000 sec 0.03000000 sec 1
											SF01 NUC1 P1 SI SF WDW SSB LB GB PC	CHANNEL fl ======= 150.9279571 MHz 13C 11.90 usec 32768 150.9128665 MHz EM 0 1.00 Hz 0 1.40
200	180	160	140	120	100	80	60	40	20	ppm		

