Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2023

Supplementary Material

Facile fabrication of BiOBr-Cu²⁺/TiO₂ suspension for efficient

equipment decontamination

Jie Zhang^a, Xuemeng Tian^{b,*}, Chaochao Dong^b, Ruixia Gao^b, Yuan Hu^{a,**}

^a State Key Lab of Fire Science, University of Science and Technology of China, Hefei,

230027, China

^b School of Chemistry, Xi'an Jiaotong University, Xi'an, 710049, P.R. China

*Corresponding author.

**Corresponding author.

E-mail address: yuanhu@ustc.edu.cn (Y. Hu), txm1996@stu.xjtu.edu.cn (X. Tian).

Figure S1 SEM of BiOBr-Cu²⁺ (A) and BiOBr-Cu²⁺/TiO₂ (B) with the inset of corresponding TEM. Elemental mapping of BiOBr-Cu²⁺/TiO₂ (C).

Figure S2 UV–vis DRS of TiO₂, BiOBr, BiOBr-Cu²⁺, BiOBr/TiO₂, and BiOBr-Cu²⁺/TiO₂.

Figure S3 The photodegradation efficiency of phenol on different photocatalysts.

Figure S4. Reusability (A) of BiOBr-Cu²⁺/TiO₂ on photodegradation of phenol. XRD pattern (B) for fresh (a) and five-times recycled (b) BiOBr-Cu²⁺/TiO₂ sample.

Figure S5. The photocatalytic rate of BiOBr-Cu²⁺/TiO₂ in the presence of different scavengers.

Figure S6. XPS valence-band spectra of BiOBr-Cu²⁺ (A) and TiO₂ (B); Tacu's plot (C) of BiOBr-Cu²⁺, TiO₂; Possible photocatalytic reactions (D) of BiOBr-Cu²⁺/TiO₂ heterojunctions

Kinetic models	Parameters	BiOBr-Cu ²⁺ /TiO ₂	
pseudo-first-order	$Q_{\rm e,f}^{\rm a}$ (mg g ⁻¹)	2.98	
<i>pseudo</i> -second-order	<i>k</i> ₁ (min ⁻¹)	0.0837	
	<i>R</i> ²	0.993	
	Q _{e,s} ^a (mg g ⁻¹)	3.58	
	k ₂ (g mg ⁻¹ min ⁻¹)	0.222	
	$v_0 ({ m mg g^{-1} min^{-1}})$	0.352	
	R ²	0.994	
Intraparticle diffusion	$k_{\rm i}$ (mg L ⁻¹ min ^{1/2})	0.310	
	<i>C</i> _i	0.886	
	<i>R</i> ²	0.931	

Table S1 The model parameters of pseudo-first order, pseudo-second order, and

intraparticle diffusion kinetics.

Table S2 Comparison of the phenol adsorption and photocatalytic degradation

Adsorbent –	Adsorption		Photodegradation				
	Adsorption capacity, mg g ⁻¹	Equilibrium time, min	Initial concentration, mg L ⁻¹	Degradation degree, %	Treatment time, min	Degradation rate, min ⁻¹	Ref.
BiOBr-Cu ²⁺ /TiO ₂	2.91	40	10	85.0	180	9.6 × 10 ⁻³	This work
TiO ₂ /ZnAl	0.15	120	10	55.7	120	6.0 × 10 ⁻³	[R1]
γ-Al ₂ O ₃ TiO ₂	a	60	40	-	360	2.5 × 10 ⁻³	[R2]
ZnAl LDH–SDS	×b	60	40	95.0	420	-	[R3]
01%Pd-0.5%Au/TiO₂	-	120	94.11	69	120	5.5 × 10 ⁻³	[R4]

between BiOBr-Cu²⁺/TiO₂ and other adsorbents reported in the literatures.

^a means it is not mentioned or calculated.

^b represents almost no adsorption

References

[R1] J.C. Contreras-Ruiz, S. Martínez-Gallegos, J.L. García-Rivas, J. Illescas, J.C. González-Juárez, G. Macedo Miranda, E. Ordoñez Regil, Influence of the textural parameters of LDH-TiO₂ composites on phenol adsorption and photodegradation capacities, Int. J. Photoenergy 2019 (2019) 1–11.

[R2] C. Martinez-Gómez, I. Rangel-Vazquez, R. Zarraga, G. Del Ángel, B. Ruíz-Camacho, F. Tzompantzi, E. Vidal-Robles, A. Perez-Larios, Photodegradation and mineralization of phenol using TiO_2 coated γ -Al₂O₃: effect of thermic treatment, Processes 10 (2022) 1186.

[R3] G. Romero Ortiz, L. Lartundo-Rojas, J.E. Samaniego-Benítez, Y. Jiménez-Flores, H.A. Calderón, A. Mantilla, Photocatalytic behavior for the phenol degradation of ZnAl layered double hydroxide functionalized with SDS, J. Environ. Manage. 277 (2021) 111399.

[R4] M.T. Yilleng, E.C. Gimba, G.I. Ndukwe, I.M. Bugaje, D.W. Rooney, H.G. Manyar, Batch to continuous photocatalytic degradation of phenol using TiO_2 and Au-Pd nanoparticles supported on TiO_2 , J. Environ. Chem. Eng. 6 (2018) 6382–6389.