Electronic supplementary materials

Efficient Oxyselenation and Aminoselenation Utilizing a Selenenyl Iodide Based on the Characteristic Thermodynamics of Its Reaction with Olefins

Satoru Kuwano, Erika Takahashi, Jun Kikushima, Shohei Sase and Kei Goto*

Contents

1. Experimental section S2
2. NMR spectra S12

Experimental section

General

All synthetic experiments were performed under an argon atmosphere. CHCl_{3} was purchased from commercial sources, distilled over CaH_{2}, and dried over $4 \AA \AA \mathrm{MS}$. MeCN was purchased from commercial sources, distilled over CaH_{2}, and dried over $3 \AA$ MS. Other chemicals were purchased from commercial sources and used as received. Silica gel column chromatography was performed using Kanto Chemical silica gel N60. Preparative thin layer chromatography (PTLC) was performed using Merck silica gel 60 PF254. ${ }^{1}$ H NMR spectra were recorded on a JEOL JNM-AL400, a JEOL LAMBDA400, JEOL ECX-400, or a JEOL ECX-500, and the chemical shifts of ${ }^{1} \mathrm{H}$ are referenced to the residual proton signal of $\mathrm{CDCl}_{3}(\delta 7.25) .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectra were recorded on a JEOL ECX-400 or a JEOL ECX-500, and the chemical shifts are given relative to CDCl_{3} ($\delta 77.0$) as internal standards. ${ }^{77} \mathrm{Se}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectra were recorded on a JEOL ECX- 400 or a JEOL ECX-500, and the chemical shifts of ${ }^{77} \mathrm{Se}$ are referenced to $\mathrm{Ph}_{2} \mathrm{Se}_{2}(\delta 480)$ as an external standard. All spectra were assigned with the aid of DEPT, COSY, HMQC, and HMBC NMR experiments. IR spectra were recorded on a JASCO FT/IR- 4100. High-resolution FD-TOF mass spectra were measured on a JEOL JMS-T100GCv "AccuTOF GCv". Melting points (m.p.) were measured with a Yanaco MP-S3 (uncorrected).

${ }^{1} H$ NMR study of a reaction of BpqSeI and cyclohexene

BpqSeI (15 mg) and 1, 1, 2,2-tetrachloroethane (internal standard) $(2 \mu \mathrm{~L})$ were added to a J. Young NMR tube. The mixture was dissolved in $\mathrm{CDCl}_{3}(0.6 \mathrm{~mL})$ and cyclohexene $(14 \mu \mathrm{~L})$ was added. For measurements, the mixture was pre-cooled at the desired temperature until equilibrium was reached. After pre-cooling, the mixture was analyzed using a JEOL ECX500 MHz spectrometer at $10{ }^{\circ} \mathrm{C}$ intervals in the temperature range of 10 to $-30^{\circ} \mathrm{C}$, and the compound ratios were determined from the signal intensities. Measurements were made at least 10 times at the temperature consecutively, and the average of the signal intensity ratios was used to determine the equilibrium constant. The thermodynamic parameters ΔH° and ΔS° were calculated based on the equilibrium constant.

Equilibrium Equations

1) $K_{e q}=\frac{[3 a]}{[1 a][2 a]}$
2) $-R T \ln K_{e q}=\Delta H^{\circ}-\Delta S^{\circ}$

Variable-temperature (VT) ${ }^{1} \mathrm{H}$ NMR spectra $\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right)$

van't Hoff plot for the VT-NMR studies

General procedure for oxyselenation of olefin (2)

To a solution of $\operatorname{BpqSeI}(\mathbf{1 a})(1.0 \mathrm{eq})$ in CHCl_{3} and $\mathrm{MeCN}(1: 1)$ were added NIS (1.0 eq), olefin (2) (6.0 eq), and ROH 4 (5.0 eq). The resulting reaction mixture was stirred at $25^{\circ} \mathrm{C}$ for 30 min before saturated aq. $\mathrm{Na}_{2} \mathrm{SO}_{3}$ was added. The two layers were separated, and the aqueous layer was extracted with CHCl_{3}. The combined organic layers were dried over MgSO_{4} and filtered. The filtrate was concentrated in vacuo and the crude mixture was purified by preparative TLC (hexane $/ \mathrm{CHCl}_{3}=1: 1$) to give product 5 .

General procedure for aminoselenation of olefin (2)

To a solution of $\operatorname{BpqSeI}(\mathbf{1 a})(1.0 \mathrm{eq})$ in CHCl_{3} and $\mathrm{MeCN}(1: 1)$ were added NIS (0.9 eq), olefin (2) (1.0 eq), and amine 9 $(1.0 \mathrm{eq})$. The resulting reaction mixture was stirred at $25^{\circ} \mathrm{C}$ for 10 or 60 min before saturated aq. $\mathrm{Na}_{2} \mathrm{SO}_{3}$ was added. The two layers were separated, and the aqueous layer was extracted with CHCl_{3}. The combined organic layers were dried over MgSO_{4} and filtered. The filtrate was concentrated in vacuo and the crude mixture was purified by preparative TLC (hexane $/ \mathrm{CHCl}_{3}=1: 1$) to give product 10 .

Analytical data of new compounds

(5',5"'-bis(2,6-diisopropylphenyl)-2,6,2"'", $6^{\prime \prime \prime \prime \prime}$-tetraisopropyl-1, $1^{\prime}: 3^{\prime}, 1^{\prime \prime}: 3^{\prime \prime}, 1^{\prime \prime \prime}: 3^{\prime \prime \prime}, 1^{\prime \prime \prime \prime}-q u i n q u e p h e n y l-2^{\prime \prime}-$ $\mathbf{y l}$ (trans-2-ethylcyclohyxyl)selane (5b)

5b
$35.3 \mathrm{mg}(32.8 \mu \mathrm{~mol})$ of $\mathbf{1 a}$ was used, and 29.2 mg of $\mathbf{5 b}$ was obtained (83% yield). $\mathbf{5 b}$: white solids; m.p. $>290^{\circ} \mathrm{C} ;{ }^{1} \mathbf{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.38-7.36(\mathrm{~m}, 3 \mathrm{H}), 7.31(\mathrm{t}, J=7.8 \mathrm{~Hz}, 4 \mathrm{H}), 7.27(\mathrm{~s}$, $4 \mathrm{H}), 7.16(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 8 \mathrm{H}), 6.97(\mathrm{t}, J=1.8 \mathrm{~Hz}, 2 \mathrm{H}), 3.08-3.00(\mathrm{~m}, 2 \mathrm{H}), 2.91-2.83(\mathrm{~m}, 10 \mathrm{H}), 1.74-$ $1.69(\mathrm{~m}, 1 \mathrm{H}), 1.65-1.60(\mathrm{~m}, 1 \mathrm{H}), 1.46-1.40(\mathrm{~m}, 1 \mathrm{H}), 1.29-1.24(\mathrm{~m}, 2 \mathrm{H}), 1.19-1.12(\mathrm{~m}, 27 \mathrm{H}), 1.06(\mathrm{~d}$, $J=6.9 \mathrm{~Hz}, 24 \mathrm{H}$), $0.87(\mathrm{t}, J=6.9 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 148.9$ (s), 146.9 (s$), 146.8(\mathrm{~s}), 142.8(\mathrm{~s}), 139.6$ (s$), 139.2$ (s), 129.6 (d), 129.5 (d), 129.4 (d), 128.8 (d), 128.0 (d), 127.8 (s$), 122.4$ (d), 77.8 (d), 63.4 (t), 46.4 (d), 30.4 (d),
 (KBr); 3059, 2960, 2928, 2867, 1597, $1459 \mathrm{~cm}^{-1}$; HRMS (FD-TOF) $m / z 1076.6323$ [M] (calcd for $\mathrm{C}_{74} \mathrm{H}_{92} \mathrm{OSe}$, 1076.6313).
(trans-2-(benzyl)cyclohyxyl)(5', $5^{\prime \prime \prime}$-bis(2,6-diisopropylphenyl)-2,6,2"'", $6^{\prime \prime \prime \prime}$-tetraisopropyl$1,1^{\prime}: 3^{\prime}, 1^{\prime \prime}: 3^{\prime \prime}, 1^{\prime \prime \prime}: 3^{\prime \prime \prime}, 1^{\prime \prime \prime \prime}$-quinquephenyl-2'-yl)selane (5c)

$50.0 \mathrm{mg}(46.5 \mu \mathrm{~mol})$ of $\mathbf{1 a}$ was used, and 51.8 mg of $\mathbf{5 c}$ was obtained (95% yield). $\mathbf{5 c}$: white solids; m.p. 254-255 ${ }^{\circ} \mathrm{C}$; ${ }^{1} \mathbf{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.36-7.33(\mathrm{~m}, 1 \mathrm{H}), 7.28-7.22(\mathrm{~m}, 6 \mathrm{H}), 7.11-7.06$ $(\mathrm{m}, 12 \mathrm{H}), 6.92-6.90(\mathrm{~m}, 3 \mathrm{H}), 6.88(\mathrm{t}, J=1.7 \mathrm{~Hz}, 2 \mathrm{H}), 6.76-6.75(\mathrm{~m}, 2 \mathrm{H}), 4.08(\mathrm{~d}, J=12.6 \mathrm{~Hz}, 1 \mathrm{H})$, $3.88(\mathrm{~d}, J=12.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.90-2.78(\mathrm{~m}, 10 \mathrm{H}), 1.74-1.68(\mathrm{~m}, 1 \mathrm{H}), 1.58-1.53(\mathrm{~m}, 1 \mathrm{H}), 1.39-1.34(\mathrm{~m}$, 1 H), $1.27-1.25(\mathrm{~m}, 2 \mathrm{H}), 1.18-1.06(\mathrm{~m}, 27 \mathrm{H}), 0.97(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 24 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 148.9(\mathrm{~s}), 146.8$ (s), 146.7 (s), 142.6 (s$), 139.5$ (s$), 139.1$ (s$), 138.4$ (s$), 129.7$ (d), 129.6 (d), 129.5 (d), 128.8 (s$), 128.2$ (d), 128.1 (d), 127.8 (d), 127.5 (d), 127.1 (d), 122.4 (d), 75.6 (d), 70.0 (t), 46.4 (d), 30.3 (d), 27.0 (t), 26.2 (t), 24.6 (q), 24.4 (q), 24.0 (q), 22.8 (t), 20.9 (t); ${ }^{77}$ Se NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 305$; IR (KBr); 3062, 3031, 2960, 2926, 2867, 1596, $1458 \mathrm{~cm}^{-1}$; HRMS (ESITOF) $m / z 1161.6376[\mathrm{M}]^{+}$(calcd for $\mathrm{C}_{99} \mathrm{H}_{94} \mathrm{NaOSe}, 1161.6362$).
(5', $5^{\prime \prime \prime}-$ bis(2,6-diisopropylphenyl)-2,6,2"'", $6^{\prime \prime \prime \prime}-$ tetraisopropyl-1, $\left.1^{\prime}: 3^{\prime}, 1^{\prime \prime}: 3^{\prime \prime}, 1^{\prime \prime \prime}: 3^{\prime \prime \prime}, 1^{\prime \prime \prime \prime}-q u i n q u e p h e n y l-2^{\prime \prime}-y l\right)$ (trans-2-(2-isobutoxyethan-1-)cyclohyxyl)selane (5d)

$17.7 \mathrm{mg}(16.4 \mu \mathrm{~mol})$ of $\mathbf{1 a}$ was used, and 18.1 mg of $\mathbf{5 d}$ was obtained (96% yield). 5d: white solids; m.p. 273-274 ${ }^{\circ} \mathrm{C}$; ${ }^{1} \mathbf{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.40-7.38(\mathrm{~m}, 3 \mathrm{H}), 7.32$ (t, $J=7.7 \mathrm{~Hz}, 4 \mathrm{H}), 7.28(\mathrm{~s}, 4 \mathrm{H}), 7.20(\mathrm{~d}, J=7.4 \mathrm{~Hz}, 8 \mathrm{H}), 6.99(\mathrm{t}, J=1.7 \mathrm{~Hz}, 2 \mathrm{H}), 3.24-$ $3.22(\mathrm{~m}, 2 \mathrm{H}), 3.17-3.14(\mathrm{~m}, 2 \mathrm{H}), 3.03-2.99(\mathrm{~m}, 2 \mathrm{H}), 2.92-2.85(\mathrm{~m}, 10 \mathrm{H}), 1.71-1.65(\mathrm{~m}$, $3 \mathrm{H}), 1.47-1.44(\mathrm{~m}, 2 \mathrm{H}), 1.36-1.07(\mathrm{~m}, 53 \mathrm{H}), 0.76(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 6 \mathrm{H}){ }^{13} \mathbf{C} \mathbf{N M R}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 148.8(\mathrm{~s}), 146.8(\mathrm{~s})$,
146.8 (s), 142.8 (s), 139.6 (s$), 139.2$ (s$), 129.5$ (d), 129.4 (d), 128.7 (s$), 128.0$ (d), 127.8 (d), 122.4 (d), 78.7 (d), 78.2 (t), $69.9(t), 67.7(t), 46.5(\mathrm{~d}), 30.4(\mathrm{~d}), 28.3(\mathrm{~d}), 27.3(\mathrm{t}), 26.8(\mathrm{t}), 24.5(\mathrm{q}), 24.4(\mathrm{q}), 24.1(\mathrm{q}), 24.0(\mathrm{q}), 23.1(\mathrm{~d}), 21.2(\mathrm{~d}), 19.2$ (t); ${ }^{77}$ Se NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 293$; IR (KBr); 3060, 2958, 2929, 2867, 1597, $1460 \mathrm{~cm}^{-1} ;$ HRMS (FD-TOF) m / z $1148.6936[\mathrm{M}]^{+}$(calcd for $\mathrm{C}_{78} \mathrm{H}_{100} \mathrm{O}_{2} \mathrm{Se}, 1148.6889$).
(5', $5^{\prime \prime \prime}$-bis(2,6-diisopropylphenyl)-2,6,2"'", $6^{\prime \prime \prime \prime}$-tetraisopropyl-1, $1^{\prime}: 3^{\prime}, 1^{\prime \prime}: 3^{\prime \prime}, 1^{\prime \prime \prime}: 3^{\prime \prime \prime}, 1^{\prime \prime \prime \prime}-$ quinquephenyl-2'-yl) (trans-2-(2-(ethylthio)ethan-1-)cyclohyxyl)selane (5e)

$5 e$ $17.7 \mathrm{mg}(16.4 \mu \mathrm{~mol})$ of $\mathbf{1 a}$ was used, and 14.1 mg of $\mathbf{5 e}$ was obtained (76% yield). $\mathbf{5 e}$: white solids; m.p. $252-253{ }^{\circ} \mathrm{C}$; ${ }^{\mathbf{1}} \mathbf{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.42-7.39(\mathrm{~m}, 3 \mathrm{H}), 7.33(\mathrm{t}, J=7.9$ $\mathrm{Hz}, 4 \mathrm{H}), 7.29(\mathrm{~s}, 4 \mathrm{H}), 7.20(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 8 \mathrm{H}), 6.99(\mathrm{~s}, 2 \mathrm{H}), 3.18-3.10(\mathrm{~m}, 4 \mathrm{H}), 2.92-2.84$ $(\mathrm{m}, 10 \mathrm{H}), 2.37-2.32(\mathrm{~m}, 4 \mathrm{H}), 1.75-1.66(\mathrm{~m}, 2 \mathrm{H}), 1.45-1.43(\mathrm{~m}, 1 \mathrm{H}), 1.34-1.31(\mathrm{~m}, 1 \mathrm{H})$, 1.26-1.07 (m, 55H); ${ }^{13}$ C NMR (125 MHz, CDCl_{3}): $\delta 148.8$ (s), 146.8 (s$), 146.7$ (s$), 142.7$ (s$), 139.6$ (s), 139.1 (s$), 129.6$ (d), 129.4 (d), 128.7 (s$), 128.1$ (d), 127.8 (d), 122.4 (d), 78.3 (d), 68.3 (t), 46.4 (d), 31.0 (t), 30.4 (d), 27.3 (t), 26.7 (t), 26.3 (t), 24.5 (q), 24.4 (q), 24.1 (q), 24.1 (q), 23.1 (t), 21.2 (t), 14.8 (q); ${ }^{77} \mathbf{S e}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 314$; IR (KBr); 3059, 3033, 2961, 2927, 2866, 1739, $1462 \mathrm{~cm}^{-1}$; HRMS (FD-TOF) $\mathrm{m} / \mathrm{z} 1136.6364$ [M] (calcd for $\mathrm{C}_{76} \mathrm{H}_{96} \mathrm{OSSe}$, 1136.6347).
(5',5'"-bis(2,6-diisopropylphenyl)-2,6,2"'", $6^{\prime \prime \prime \prime}$-tetraisopropyl-1,1':3', $\mathbf{1}^{\prime \prime}: 3^{\prime \prime}, 1^{\prime \prime \prime}: 3^{\prime \prime \prime}, 1^{\prime \prime \prime \prime}-q u i n q u e p h e n y l-2^{\prime \prime}-$ yl)(trans-2-isopropoxycyclohyxyl)selane (5f)

$5 f$ $17.7 \mathrm{mg}(16.4 \mu \mathrm{~mol})$ of $\mathbf{1 a}$ was used, and 15.8 mg of $\mathbf{5 f}$ was obtained (88% yield). $\mathbf{5 f}$: colorless crystals; m.p. 267-270 ${ }^{\circ} \mathrm{C} ;{ }^{1} \mathbf{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.40(\mathrm{~s}, 3 \mathrm{H}), 7.33(\mathrm{t}, J=7.7 \mathrm{~Hz}, 4 \mathrm{H})$, $7.29(\mathrm{~s}, 4 \mathrm{H}), 7.20(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 8 \mathrm{H}), 6.98(\mathrm{~s}, 2 \mathrm{H}), 3.20-3.15(\mathrm{~m}, 1 \mathrm{H}), 3.01(\mathrm{~d}, J=3.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.89$ $(\mathrm{s}, 8 \mathrm{H}), 2.82(\mathrm{~d}, J=3.2 \mathrm{~Hz}, 1 \mathrm{H}), 1.70-1.15(\mathrm{~m}, 32 \mathrm{H}), 1.07(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 24 \mathrm{H}), 0.76(\mathrm{~d}, J=6.0 \mathrm{~Hz}$, $3 \mathrm{H}), 0.72(\mathrm{~d}, J=6.0 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 149.2$ (s), 147.0 (s), 146.9 (s), 142.8 (s), 139.7 (s), 139.3 (s$), 129.8$ (d), 129.7 (d), 129.5 (d), 129.2 (s$), 128.2$ (d), 127.9 (d), 122.5 (d), 73.9 (d), 68.4 (d), 47.8 (d), 30.4 (d), 27.4 (t), 27.1 (t), 24.6 (q), 24.5 (q), 24.2 (q), 23.3 (t), 22.3 (q), 21.2 (t); ${ }^{77} \mathbf{S e}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 282$; IR (KBr); 3059, 3033, 2960, 2967, 2867, 1459, 1382, 1362, 803, 763, $753 \mathrm{~cm}^{-1}$; HRMS (FD-TOF) $\mathrm{m} / \mathrm{z} 1090.6475$ [M] (calcd for $\mathrm{C}_{75} \mathrm{H}_{94} \mathrm{OSe}$, 1090.6470).
(trans-2-(tert-butoxy)cyclohyxyl)(5',5"'-bis(2,6-diisopropylphenyl)-2,6,2"'", $6^{\prime \prime \prime \prime}$-tetraisopropyl1, $\left.1^{\prime}: 3^{\prime}, 1^{\prime \prime}: 3^{\prime \prime}, 1^{\prime \prime \prime}: 3^{\prime \prime \prime}, 1^{\prime \prime \prime \prime}-q u i n q u e p h e n y l-2^{\prime \prime}-y l\right)$ selane (5g)

$17.7 \mathrm{mg}(16.4 \mu \mathrm{~mol})$ of $\mathbf{1 a}$ was used, and 9.8 mg of $\mathbf{5 g}$ was obtained (54% yield). $\mathbf{5 g}$: colorless crystals; m.p. 269-273 ${ }^{\circ} \mathrm{C}$; ${ }^{1} \mathbf{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.41$ ($\mathrm{s}, 3 \mathrm{H}$), $7.32(\mathrm{t}, J=7.7 \mathrm{~Hz}, 8 \mathrm{H})$, 7.21-7.19 (m, 8H), 6.98 (t, $J=1.4 \mathrm{~Hz}, 2 \mathrm{H}$), 3.11 (d, $J=2.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.90(\mathrm{~s}, 8 \mathrm{H}), 2.72(\mathrm{~s}, 1 \mathrm{H}), 1.90-$ $5 \mathrm{~g} \quad 1.84(\mathrm{~m}, 1 \mathrm{H}), 1.74-1.69(\mathrm{~m}, 1 \mathrm{H}), 1.27-1.02(\mathrm{~m}, 54 \mathrm{H}), 0.67(\mathrm{~s}, 9 \mathrm{H}) ;{ }^{13} \mathbf{C} \mathbf{N M R}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right):$ $\delta 147.1(\mathrm{~s}), 146.9(\mathrm{~s}), 142.7(\mathrm{~s}), 139.6(\mathrm{~s}), 139.3(\mathrm{~s}), 129.8$ (d, two signals were overlapped), 129.3 (d, s two signals were overlapped), 128.4 (d), 127.9 (d), 122.5 (d), 73.1 (s), 67.8 (d), 50.5 (d), 30.4 (d), 27.9 (a), 27.6 (t), 26.7 (t), 24.7 (q), 24.5 (q), 24.2 (q), 24.1 (q), 22.7 (t), 20.7 (t); ${ }^{77} \mathbf{S e}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 306$; IR (KBr); 2959, 2926, 2866, 1458, 1362, $1021,752 \mathrm{~cm}^{-1}$; HRMS (FD-TOF) $m / z 1104.6616[\mathrm{M}]^{+}$(calcd for $\mathrm{C}_{76} \mathrm{H}_{96} \mathrm{OSe}, 1104.6626$).
(trans-2-acetylcyclohyxyl)(5', $5^{\prime \prime \prime}$-bis(2,6-diisopropylphenyl)-2,6,2"'", $6^{\prime \prime \prime \prime}$-tetraisopropyl1, $\left.1^{\prime}: 3^{\prime}, 1^{\prime \prime}: 3^{\prime \prime}, 1^{\prime \prime \prime}: 3^{\prime \prime \prime}, 1^{\prime \prime \prime \prime}-q u i n q u e p h e n y l-2^{\prime \prime}-y l\right)$ selane (5h)

5h
$17.7 \mathrm{mg}(16.4 \mu \mathrm{~mol})$ of $\mathbf{1 a}$ was used, and 16.5 mg of $\mathbf{5 h}$ was obtained (92% yield). $\mathbf{5 h}$: colorless crystals; m.p. 285-287 ${ }^{\circ} \mathrm{C} ;{ }^{1} \mathbf{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.42-7.39(\mathrm{~m}, 3 \mathrm{H}), 7.34-7.27(\mathrm{~m}, 8 \mathrm{H})$, 7.20-7.18 (m, 8H), $6.98(\mathrm{t}, J=1.4 \mathrm{~Hz}, 2 \mathrm{H}), 4.39(\mathrm{~d}, J=3.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.89(\mathrm{~s}, 9 \mathrm{H}), 1.83-1.77(\mathrm{~m}$, $1 \mathrm{H}), 1.73(\mathrm{~s}, 3 \mathrm{H}), 1.66-1.63(\mathrm{~m}, 1 \mathrm{H}), 1.44-1.41(\mathrm{~m}, 1 \mathrm{H}), 1.29-1.21(\mathrm{~m}, 5 \mathrm{H}), 1.17-1.14(\mathrm{~m}, 24 \mathrm{H})$, 1.08-1.06 (m, 24H); ${ }^{13}$ C NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 169.7$ (s), 148.9 (s), 146.8 (s), 142.8 (s), 139.9 (s), 139.7 (s), 139.2 (s), 139.1 (s , 129.9 (d), 129.8 (d), 129.7 (d), 128.4 (d), 127.9 (d), 127.3 (s), 122.6 (d), 122.5 (d), 30.5 (d), 27.5 (t), 26.8 (t), 24.6 (q), 24.5 (q), 24.14 (q), 24.08 (t), 22.9 (t), 21.5 (t), 21.1 (q); ${ }^{77} \mathbf{S e}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 317$; IR (KBr); 3058, 3033, 2961, 2927, 2867, 1741, 1459, 1362, 1233, 1032, 884, 804, $753 \mathrm{~cm}^{-1}$; HRMS (FD-TOF) $\mathrm{m} / \mathrm{z} 1090.6091$ [M] (calcd for $\mathrm{C}_{74} \mathrm{H}_{90} \mathrm{O}_{2} \mathrm{Se}, 1090.6106$).
(5',5'"-bis(2,6-diisopropylphenyl)-2,2'"',6,6"'"-tetraisopropyl-[1,1':3',1':3', $\left.1^{\prime \prime \prime}: 3^{\prime \prime \prime}, 1^{\prime \prime \prime}{ }^{\prime \prime}-q u i n q u e p h e n y l\right]-2 "-$ yl)(2-methoxycyclopentyl)selane (5i)

$5 i$
$20.1 \mathrm{mg}(18.7 \mu \mathrm{~mol})$ of $\mathbf{1 a}$ was used, and 19.1 mg of $\mathbf{5 i}$ was obtained (97% yield). $\mathbf{5 i}$: white solids; m.p. $>290{ }^{\circ} \mathrm{C} ;{ }^{1} \mathbf{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.47-7.41(\mathrm{~m}, 3 \mathrm{H}), 7.32(\mathrm{t}, J=7.7 \mathrm{~Hz}, 8 \mathrm{H}), 7.19(\mathrm{~d}, J$ $=7.9 \mathrm{~Hz}, 8 \mathrm{H}), 7.00(\mathrm{~s}, 2 \mathrm{H}), 3.18(\mathrm{~d}, J=5.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.92-2.88(\mathrm{~m}, 9 \mathrm{H}), 2.71(\mathrm{~s}, 3 \mathrm{H}), 1.72-1.66(\mathrm{~m}$, 1 H), 1.63-1.57 (m, 1H), 1.51-1.43 (m, 3H), 1.16-1.03 (m, 48H); ${ }^{13}$ C NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$): δ 148.7, 146.9, 146.8, 142.4, 139.7, 139.1, 129.7, 129.5, 129.4, 128.4, 127.8, 122.5, 88.6, 55.7, 46.6, 30.8, 30.4, 30.2, 24.4, 24.1, 24.0, 23.5; ${ }^{77} \mathbf{S e}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): δ; IR (KBr); 3059, 2960, 2868, 1597, 1460, $753 \mathrm{~cm}^{-1} ; \mathbf{H R M S}$ (ESI-TOF) $m / z 1071.5888[\mathrm{M}+\mathrm{Na}]^{+}\left(\right.$calcd for $\mathrm{C}_{72} \mathrm{H}_{88} \mathrm{NaOSe}$, 1071.5893).
(5',5'"-bis(2,6-diisopropylphenyl)-2,2'"',6,6"'"-tetraisopropyl-[1,1':3',1':3', $\left.\mathbf{1}^{\prime \prime \prime}: 3^{\prime \prime \prime}, 1^{\prime \prime \prime}{ }^{\prime \prime}-q u i n q u e p h e n y l\right]-2^{\prime \prime}-$ yl)(2-methoxycycloheptyl)selane (5j)

5j
$20.4 \mathrm{mg}(20.0 \mu \mathrm{~mol})$ of $\mathbf{1 a}$ was used, reaction time is 6 h , and 11.1 mg of $\mathbf{5 j}$ was obtained (54% yield). 5j: white solids; m.p. $220{ }^{\circ} \mathrm{C}$ (decomp.); ${ }^{1} \mathbf{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.41$ (s, 3 H), 7.33 (t, $J=7.7 \mathrm{~Hz}, 8 \mathrm{H}), 7.20(\mathrm{~d}, J=7.4 \mathrm{~Hz}, 8 \mathrm{H}), 7.00(\mathrm{~s}, 2 \mathrm{H}), 3.04-2.81(\mathrm{~m}, 10 \mathrm{H}), 2.68(\mathrm{~s}, 3 \mathrm{H}), 1.75-$ $1.70(\mathrm{~m}, 1 \mathrm{H}), 1.65-1.60(\mathrm{~m}, 1 \mathrm{H}), 1.54-1.50(\mathrm{~m}, 1 \mathrm{H}), 1.44-1.40(\mathrm{~m}, 4 \mathrm{H}), 1.35-1.24(\mathrm{~m}, 3 \mathrm{H}), 1.18-$ 1.07 (m, 48H); ${ }^{13} \mathbf{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 149.2,146.9,146.8,142.6,139.6,139.2,129.8,129.6,129.5,128.5,128.2$, $127.8,122.5,84.0,55.7,49.5,30.4,30.0,29.3,28.6,25.6,24.5,24.5,24.0,21.1 ;{ }^{77} \mathbf{S e}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 295$; IR (KBr); 3060, 2961, 2926, 2867, 1460, $754 \mathrm{~cm}^{-1}$; HRMS (ESI-TOF) $m / z 1099.6200[\mathrm{M}+\mathrm{Na}]^{+}$(calcd for $\mathrm{C}_{74} \mathrm{H}_{92} \mathrm{NaOSe}$, 1099.6206).
(5',5'"-bis(2,6-diisopropylphenyl)-2,2'"',6,6"'"-tetraisopropyl-[1,1':3',1':3',1"':3'",1'"'-quinquephenyl]-2"-yl)(-2-methoxy-2,3-dihydro-1H-inden-1-yl)selane (5k)

5k $20.0 \mathrm{mg}(18.6 \mu \mathrm{~mol})$ of $\mathbf{1 a}$ was used, reaction time is 18 h , and 12.1 mg of $\mathbf{5 k}$ was obtained (59% yield). 5j: white solids; m.p. $>290{ }^{\circ} \mathrm{C}$; ${ }^{\mathbf{1}} \mathbf{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.54-7.47(\mathrm{~m}, 3 \mathrm{H}), 7.43-$ $7.29(\mathrm{~m}, 9 \mathrm{H}), 7.23-7.05(\mathrm{~m}, 12 \mathrm{H}), 6.83(\mathrm{~d}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.24(\mathrm{~s}, 1 \mathrm{H}), 3.41(\mathrm{~d}, J=5.7 \mathrm{~Hz}$, $1 \mathrm{H}), 2.95-2.83(\mathrm{~m}, 9 \mathrm{H}), 2.66(\mathrm{~s}, 3 \mathrm{H}), 2.63(\mathrm{~d}, J=17.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.16-0.92(\mathrm{~m}, 48 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 147.1,146.7,141.6,139.8,138.9,129.6,129.5,129.0,128.9,127.9,126.3,125.0,124.8,122.5$, 86.5, 55.8, 51.7, 37.5, 30.6, 30.4, 24.5, 24.3, 24.2; IR (KBr); 2960, 1459, 1092, $729 \mathrm{~cm}^{-1}$; HRMS (ESI-TOF) m / z $1119.5877[\mathrm{M}]^{+}$(calcd for $\mathrm{C}_{76} \mathrm{H}_{88} \mathrm{OSe}$, 1119.5893).
(5',5"'-bis(2,6-diisopropylphenyl)-2,6,2"'", $6^{\prime \prime \prime \prime \prime}$-tetraisopropyl-1,1':3', $1^{\prime \prime}: 3^{\prime \prime}, 1^{\prime \prime \prime}: 3^{\prime \prime \prime}, 1^{\prime \prime \prime \prime}-q u i n q u e p h e n y l-2^{\prime \prime}-$ yl)(trans-2-hydroxy)selane (7)

7
$17.7 \mathrm{mg}(16.4 \mu \mathrm{~mol})$ of $\mathbf{1 a}$ was used, and 16.9 mg of 7 was obtained (98% yield). 7 : white solids; m.p. $>290{ }^{\circ} \mathrm{C}$; ${ }^{1} \mathbf{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.42-7.39(\mathrm{~m}, 3 \mathrm{H}), 7.33-7.29(\mathrm{~m}, 8 \mathrm{H}), 7.18(\mathrm{~d}, J=$ $7.8 \mathrm{~Hz}, 8 \mathrm{H}), 6.99(\mathrm{~s}, 2 \mathrm{H}), 3.11(\mathrm{~s}, 1 \mathrm{H}), 2.88(\mathrm{~s}, 8 \mathrm{H}), 2.55-2.50(\mathrm{~m}, 1 \mathrm{H}), 1.82-1.79(\mathrm{~m}, 1 \mathrm{H}), 1.58-$ $1.54(\mathrm{~m}, 2 \mathrm{H}), 1.35(\mathrm{~s}, 1 \mathrm{H}), 1.25-1.06(\mathrm{~m}, 53 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 149.3(\mathrm{~s}), 146.8(\mathrm{~s})$, (s), 142.7 (s), 139.8 (s$), 139.0$ (s$), 129.8$ (d), 129.7 (d), 128.5 (d), 127.8 (s$), 126.8$ (d), 127.9 (d), 122.5 (d), 73.5 (d), 53.2 (d), 32.9 (t), 30.8 (t), 30.4 (d), 25.8 (t), 24.6 (q), 24.2 (q), 23.5 (t); ${ }^{77} \mathbf{S e}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 297$; IR (KBr); 3481, 3060, 2961, 2927, 2867, 1596, $1459 \mathrm{~cm}^{-1}$; HRMS (FD-TOF) $m / z 1048.6020[\mathrm{M}]^{+}$(calcd for $\mathrm{C}_{72} \mathrm{H}_{88} \mathrm{OSe}, 1048.6000$).
N-(trans-2-((5', $5^{\prime \prime \prime}-$ bis(2,6-diisopropylphenyl)-2,6, $2^{\prime \prime \prime}, 6^{\prime \prime \prime \prime}$-tetraisopropyl-1, $1^{\prime}: 3^{\prime}, 1^{\prime \prime}: 3^{\prime \prime}, 1^{\prime \prime \prime}: 3^{\prime \prime \prime}, 1^{\prime \prime \prime \prime}$ -quinquephenyl-2"-yl)selanyl)cyclohexyl)aniline (10a)

$8.8 \mathrm{mg}(8.2 \mu \mathrm{~mol})$ of $\mathbf{1 a}$ was used, and 8.5 mg of $\mathbf{1 0 a}$ was obtained (92% yield). 10a: colorless crystals; m.p. $>300{ }^{\circ} \mathrm{C} ;{ }^{1} \mathbf{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.52-7.44(\mathrm{~m}, 3 \mathrm{H}), 7.29(\mathrm{t}, J=7.7 \mathrm{~Hz}, 4 \mathrm{H})$, $7.22(\mathrm{~s}, 4 \mathrm{H}), 7.16(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 8 \mathrm{H}), 6.96(\mathrm{~s}, 2 \mathrm{H}), 6.83(\mathrm{t}, J=7.9 \mathrm{~Hz}, 2 \mathrm{H}), 6.46(\mathrm{t}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H})$, $5.89(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 2 \mathrm{H}), 3.46(\mathrm{~s}, 1 \mathrm{H}), 3.12(\mathrm{~s}, 1 \mathrm{H}), 2.88-2.84(\mathrm{~m}, 9 \mathrm{H}), 2.01-1.95(\mathrm{~m}, 1 \mathrm{H}), 1.56(\mathrm{t}, J$ $=4.6 \mathrm{~Hz}, 1 \mathrm{H}), 1.42-1.35(\mathrm{~m}, 2 \mathrm{H}), 1.27-0.98(\mathrm{~m}, 52 \mathrm{H}) ;{ }^{13} \mathbf{C} \mathbf{N M R}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 149.5 .146 .8$, $146.7,146.4,142.8,139.6,139.1,129.6,129.5,129.0,128.7,128.0,127.8,122.4,117.1,112.6,60.4$, 46.7, 30.3, 27.5, 26.2, 24.5, 24.4, 24.0, 23.8, 22.4, 15.4; ${ }^{77}$ Se NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 280$; IR (KBr); 3400, 3057, 2962, 2927, 2867, 1601, 1503, 1460, 1362, 885, 803, $753 \mathrm{~cm}^{-1}$; HRMS (FD-TOF) $m / z 1123.6504[\mathrm{M}]^{+}$ (calcd for $\mathrm{C}_{77}{ }_{7}{ }_{93} \mathrm{NSe}, 1123.6473$).
N-(trans-2-((5', $5^{\prime \prime \prime}-$ bis(2,6-diisopropylphenyl)-2,6,2'"', $6^{\prime \prime \prime \prime}$-tetraisopropyl-1, $1^{\prime}: 3^{\prime}, 1^{\prime \prime}: 3^{\prime \prime}, 1^{\prime \prime \prime}: 3^{\prime \prime \prime}, 1^{\prime \prime \prime \prime}-$ quinquephenyl-2"-yl)selanyl)cyclohexyl)-4-nitroaniline (10b)

$50.0 \mathrm{mg}(46.5 \mu \mathrm{~mol})$ of $\mathbf{1 a}$ was used, and 38.4 mg of $\mathbf{1 0 b}$ was obtained (71% yield). 10b: yellow crystals; m.p. $>300{ }^{\circ} \mathrm{C} ;{ }^{\mathbf{1}} \mathbf{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.73(\mathrm{~d}, J=8.9 \mathrm{~Hz}, 2 \mathrm{H}$), $7.64(\mathrm{t}, J=7.6 \mathrm{~Hz}$, $1 \mathrm{H}), 7.55(\mathrm{~d}, ~ J=7.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.32(\mathrm{t}, J=7.7 \mathrm{~Hz}, 4 \mathrm{H}), 7.24(\mathrm{~s}, 4 \mathrm{H}), 7.18-7.16(\mathrm{~m}, 8 \mathrm{H}), 7.03-7.00$ $(\mathrm{m}, 2 \mathrm{H}), 5.70(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 4.43(\mathrm{~d}, J=4.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.23(\mathrm{~s}, 1 \mathrm{H}), 2.86(\mathrm{~s}, 9 \mathrm{H}), 2.06-2.01(\mathrm{~m}$, $1 \mathrm{H}), 1.68-1.27(\mathrm{~m}, 7 \mathrm{H}), 1.20-0.88(\mathrm{~m}, 48 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 151.6(\mathrm{~s}), 149.4(\mathrm{~s})$, 146.6 (s), 146.5 (s), 142.3 (s), 139.8 (s), 138.8 (s), 137.8 (s), 129.9 (d, two signals were overlapped), 129.8 (d), 128.9 (d), 128.6 (s), 127.9 (d), 126.3 (d), 122.5 (d), 122.2 (d), 110.4 (d), 53.0 (d), 46.5 (d), 30.4 (d), 27.8 (t), 27.1 (t), 24.5 (q), 24.3 (q), 24.0 (q), 23.2 (t), 21.5 (t); ${ }^{77}$ Se NMR (75 MHz, 1,1,2,2-tetrachloroethane- $d_{2}, 120^{\circ} \mathrm{C}$): $\delta 322$; IR (KBr); 3410, 3060, 2960, 2926, 2866, 1600, 1324, 1112, 803, $752 \mathrm{~cm}^{-1}$; HRMS (FD-TOF) $m / z 1168.6320[M]^{+}\left(\right.$calcd for $\left.\mathrm{C}_{78} \mathrm{H}_{92} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{Se}, 1168.6324\right)$.

4-chloro- N-(trans-2-((5', $5^{\prime \prime \prime}-$ bis(2,6-diisopropylphenyl)-2,6,2"'", $6^{\prime \prime \prime \prime}$-tetraisopropyl-1, $1^{\prime}: 3^{\prime}, 1^{\prime \prime}: 3^{\prime \prime}, 1^{\prime \prime \prime}: 3^{\prime \prime \prime}, 1^{\prime \prime \prime \prime}-$ quinquephenyl-2"-yl)selanyl)cyclohexyl)aniline (10c)

10c
$50.0 \mathrm{mg}(46.5 \mu \mathrm{~mol})$ of $\mathbf{1 a}$ was used, and 49.9 mg of $\mathbf{1 0 c}$ was obtained (93% yield). 10c: white crystals; m.p. $>300{ }^{\circ} \mathrm{C} ;{ }^{1} \mathbf{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.57-7.48(\mathrm{~m}, 3 \mathrm{H}), 7.32(\mathrm{t}, J=7.7 \mathrm{~Hz}, 4 \mathrm{H})$, $7.25(\mathrm{~s}, 4 \mathrm{H}), 7.18(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 8 \mathrm{H}), 6.99(\mathrm{t}, J=1.4 \mathrm{~Hz}, 2 \mathrm{H}), 6.78(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 2 \mathrm{H}), 5.77(\mathrm{~d}, J=$ $8.6 \mathrm{~Hz}, 2 \mathrm{H}), 3.56(\mathrm{~s}, 1 \mathrm{H}), 3.08(\mathrm{~d}, J=4.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.88-2.82(\mathrm{~m}, 9 \mathrm{H}), 1.21-1.94(\mathrm{~m}, 1 \mathrm{H}), 1.63-1.58$ (m, 1H), 1.39-1.06 (m, 54H); ${ }^{13}$ C NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 149.4$ (s), 146.71 (s), $146.66(\mathrm{~s}), 145.1$ (s), 142.6 (s), 139.6 (s), 139.0 (s), 129.8 (d), 129.6 (d), 128.9 (d), 128.8 (s), 128.4 (d), 127.8 (d), 122.47 (d), 122.46 (d), 121.4 (s$), 113.2$ (d), 53.6 (d), 46.9 (d), 30.4 (d), 28.3 (t), $28.0(\mathrm{t}), 24.5$ (q), 24.4 (q), 24.0 (q), 23.6 (t), 21.8 (t); ${ }^{77} \mathbf{S e}$ NMR ($75 \mathrm{MHz}, 1,1,2,2$-tetrachloroethane- $d_{2}, 120{ }^{\circ} \mathrm{C}$): δ 322; IR (KBr); 3402, 3059, 2960, 2867, 1597, 1496, 1362, 1055, 885, 813, $752 \mathrm{~cm}^{-1}$; HRMS (FD-TOF) m/z 1157.6065 $[\mathrm{M}]^{+}$(calcd for $\mathrm{C}_{78} \mathrm{H}_{92} \mathrm{ClNSe}, 1157.6084$).
N-(trans-2-((5', $5^{\prime \prime \prime}-b i s(2,6-d i i s o p r o p y l p h e n y)-2,6,2^{\prime \prime \prime \prime}, 6^{\prime \prime \prime}-$ tetraisopropyl-1, $1^{\prime}: 3^{\prime}, 1^{\prime \prime}: 3^{\prime \prime}, 1^{\prime \prime \prime}: 3^{\prime \prime \prime}, 1^{\prime \prime \prime \prime}-$ quinquephenyl-2"-yl)selanyl)cyclohexyl)-4-methoxyaniline (10d)

$50.0 \mathrm{mg}(46.5 \mu \mathrm{~mol})$ of $\mathbf{1 a}$ was used, and 33.4 mg of $\mathbf{1 0 d}$ was obtained (62% yield). 10d: pale yellow crystals; m.p. $>300{ }^{\circ} \mathrm{C} ;{ }^{1} \mathbf{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.48-7.41(\mathrm{~m}, 3 \mathrm{H}), 7.31-7.28(\mathrm{~m}$, $4 \mathrm{H}), 7.20-7.15(\mathrm{~m}, 12 \mathrm{H}), 6.96(\mathrm{~s}, 2 \mathrm{H}), 6.44(\mathrm{~d}, J=8.9 \mathrm{~Hz}, 2 \mathrm{H}), 5.86(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 2 \mathrm{H}), 3.53(\mathrm{~s}$, $3 \mathrm{H}), 3.02(\mathrm{~d}, J=4.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.93-2.78(\mathrm{~m}, 9 \mathrm{H}), 1.33-1.03(\mathrm{~m}, 56 \mathrm{H}) ;{ }^{13} \mathbf{C} \mathbf{N M R}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$: $\delta 151.9$ (s), 149.5 (s), 146.9 (s), 146.8 (s$), 142.9$ (s), 140.9 (s$), 139.7$ (s$), 139.2$ (s), 129.8 (d, two signals were overlapped), 129.6 (d), 129.0 (s), 128.3 (d), 127.9 (d), 122.5 (d), 114.9 (d), 114.2 (d), 55.9 (d), 46.9 (d), 30.5 (d), 29.8 (t), 28.5 (t), 24.6 (q), 24.1 (q), 23.9 (t), 22.1 (t); ${ }^{77}$ Se NMR (75 MHz, 1,1,2,2-tetrachloroethane- $d_{2}, 120^{\circ} \mathrm{C}$): $\delta 323$; IR (KBr); 3056, 2959, 2927, 2866, 1509, 1459, 1241, 885, 805, $754 \mathrm{~cm}^{-1}$; HRMS (FD-TOF) $\mathrm{m} / \mathrm{z} 1153.6585[\mathrm{M}]^{+}$(calcd for $\mathrm{C}_{79}{ }_{9}{ }_{95} \mathrm{NOSe}, 1153.6579$).
N-(trans-2-((5', $5^{\prime \prime \prime}-$ bis(2,6-diisopropylphenyl)-2,6,2'"', $6^{\prime \prime \prime \prime}$-tetraisopropyl-1, $1^{\prime}: 3^{\prime}, 1^{\prime \prime}: 3^{\prime \prime}, 1^{\prime \prime \prime}: 3^{\prime \prime \prime}, 1^{\prime \prime \prime \prime}-$ quinquephenyl-2"-yl)selanyl)cyclohexyl)naphthalen-1-amine (10e)

$50.0 \mathrm{mg}(46.5 \mu \mathrm{~mol})$ of $\mathbf{1 a}$ was used, and 27.8 mg of $\mathbf{1 0 e}$ was obtained (51% yield). $\mathbf{1 0 e}$: pale yellow crystals; m.p. $175-180{ }^{\circ} \mathrm{C}$; ${ }^{\mathbf{1}} \mathbf{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.60-7.57(\mathrm{~m}, 2 \mathrm{H}), 7.53-7.49$ $(\mathrm{m}, 3 \mathrm{H}), 7.33-7.25(\mathrm{~m}, 11 \mathrm{H}), 7.19-7.10(\mathrm{~m}, 8 \mathrm{H}), 6.97-6.94(\mathrm{~m}, 3 \mathrm{H}), 6.81-6.78(\mathrm{~m}, 1 \mathrm{H}), 5.26(\mathrm{~d}, J$ $=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.37(\mathrm{~s}, 1 \mathrm{H}), 3.08(\mathrm{~s}, 1 \mathrm{H}), 2.89(\mathrm{~s}, 8 \mathrm{H}), 2.11-2.05(\mathrm{~m}, 1 \mathrm{H}), 1.78-1.71(\mathrm{~m}, 1 \mathrm{H}), 1.53-$ $1.27(\mathrm{~m}, 6 \mathrm{H}), 1.17-1.01(\mathrm{~m}, 48 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 149.7$ (s), 146.9 (s), 146.8 (s), 142.7 (s), 141.4 (s , 139.7 (s), 139.2 (s), 134.4 (s), 130.1 (d, two signals were overlapped), 129.8 (d), 129.7 (d), 129.0 (s$), 128.7$ (d), 127.9 (d), 126.5 (d), 125.3 (d), 124.3 (d), 123.4 (s), 122.5 (d), 119.4 (d), 117.1 (d), 103.6 (d), 52.2 (d), 46.7 (d), 30.5 (d), 30.4 (d), 27.8 (t), 27.3 (t), 24.6 (q), 24.4 (q), 24.1 (q), 23.9 (q), 23.4 (t), 21.7 (t); ${ }^{77}$ Se NMR ($75 \mathrm{MHz}, 1,1,2,2$-tetrachloroethane- $d_{2}, 120^{\circ} \mathrm{C}$): $\delta 324$; IR (KBr); 3565, 3060, 2960, 2866, 1459, 1362, 884, 805, $753 \mathrm{~cm}^{-1}$; HRMS (FD-TOF) $m / z 1173.6606[\mathrm{M}]^{+}$(calcd for $\mathrm{C}_{82} \mathrm{H}_{95} \mathrm{NSe}, 1173.6630$).
N-(trans-2-((5', $5^{\prime \prime \prime}-b i s(2,6-d i i s o p r o p y l p h e n y l)-2,6,2^{\prime \prime \prime}, 6^{\prime \prime \prime \prime}-$ tetraisopropyl-1, $1^{\prime}: 3^{\prime}, 1^{\prime \prime}: 3^{\prime \prime}, 1^{\prime \prime \prime}: 3^{\prime \prime \prime}, 1^{\prime \prime \prime \prime}-$ quinquephenyl-2"-yl)selanyl)cyclohexyl)- N-methylaniline (10f)

10f
$50.0 \mathrm{mg}(46.5 \mu \mathrm{~mol})$ of $\mathbf{1 a}$ was used, and 51.4 mg of $\mathbf{1 0 f}$ was obtained (97% yield). 10f: pale yellow crystals; m.p. 290-295 ${ }^{\circ} \mathrm{C} ;{ }^{1} \mathbf{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.32-7.29(\mathrm{~m}, 7 \mathrm{H}), 7.21-7.15(\mathrm{~m}, 14 \mathrm{H})$, $6.99(\mathrm{t}, J=1.4 \mathrm{~Hz}, 2 \mathrm{H}), 6.71(\mathrm{t}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.67(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 2 \mathrm{H}), 3.37-3.25(\mathrm{~m}, 1 \mathrm{H}), 3.03-$ $2.98(\mathrm{~m}, 1 \mathrm{H}), 2.88-2.83(\mathrm{~m}, 8 \mathrm{H}), 2.46(\mathrm{~s}, 3 \mathrm{H}), 1.57-1.53(\mathrm{~m}, 4 \mathrm{H}), 1.41(\mathrm{~d}, J=11.7 \mathrm{~Hz}, 1 \mathrm{H}), 1.17-$ 1.01 (m, 51H); ${ }^{13}$ C NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 150.6$ (s), 150.3 (s), 147.0 (s), 146.9 (s), 143.9 (s), 139.9 (s), 139.3 (s), 137.8 (s), 129.3 (d), 129.1 (d), 128.9 (d), 127.9 (d), 127.7 (d), 127.5 (s), 122.5 (d), 117.7 (d), 114.7 (d), 64.7 (d), 45.4 (d), 33.2 (t), 30.5 (d), 30.2 (q), 27.5 (t), 27.0 (t), 25.2 (t), 24.5 (q), 24.4 (q), 24.2 (q); ${ }^{77}$ Se NMR ($75 \mathrm{MHz}, 1,1,2,2$-tetrachloroethane- $d_{2}, 120{ }^{\circ} \mathrm{C}$): $\delta 308$; IR (KBr); 3058, 2959, 2925, 2866, 1597, 1459, 1362, 882, $753 \mathrm{~cm}^{-1}$; HRMS (FD-TOF) $m / z 1137.6656[\mathrm{M}]^{+}$(calcd for $\mathrm{C}_{79} \mathrm{H}_{95} \mathrm{NSe}, 1137.6630$).

N-(2-((5', $5^{\prime \prime \prime}-$-bis(2,6-diisopropylphenyl)-2,6,2'"', $6^{\prime \prime \prime \prime}$-tetraisopropyl-1, $1^{\prime}: 3^{\prime}, 1^{\prime \prime}: 3^{\prime \prime}, 1^{\prime \prime \prime}: 3^{\prime \prime \prime}, 1^{\prime \prime \prime \prime}$-quinquephenyl$2^{\prime \prime}$-yl)selanyl)-1-phenylethyl)aniline (10h)

10h
$8.9 \mathrm{mg}(8.2 \mu \mathrm{~mol})$ of $\mathbf{1 a}$ was used, and 8.5 mg of $\mathbf{1 0 h}$ was obtained (90% yield). $\mathbf{1 0 h}$: white crystals; ${ }^{1} \mathbf{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 7.35-7.41(\mathrm{~m}, 11 \mathrm{H}), 7.24(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 8 \mathrm{H}), 7.16-7.20$ $(\mathrm{m}, 3 \mathrm{H}), 7.08-7.10(\mathrm{~m}, 4 \mathrm{H}), 6.96(\mathrm{t}, J=7.0 \mathrm{~Hz}, 2 \mathrm{H}), 6.58(\mathrm{t}, J=7.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.22(\mathrm{~d}, J=7.5 \mathrm{~Hz}$, $2 \mathrm{H}), 4.42-4.39(\mathrm{~m}, 1 \mathrm{H}), 4.09(\mathrm{~d}, J=3.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.84-2.75(\mathrm{~m}, 8 \mathrm{H}), 2.83(\mathrm{~d}, J=5.0 \mathrm{~Hz}, 2 \mathrm{H}), 1.12-$ 1.16 (m, 48H); ${ }^{13}$ C NMR (125 MHz, CDCl_{3}): $\delta 147.2$ (s), 146.9 (d), 146.4 (s , 142.5 (s), 141.8 (s$), 140.3$ (s$), 139.0$ (s),
 58.0 (s), 37.5 (s), 30.5 (s), 24.5 (d), 24.1 (d); ${ }^{77} \mathbf{S e}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 211$; IR (KBr); 3418, 3060, 2960, 2867, 1600, 1504, 885, 805, $753 \mathrm{~cm}^{-1}$; HRMS (FD-TOF) $\mathrm{m} / \mathrm{z} 1145.6603[\mathrm{M}]^{+}$(calcd for $\mathrm{C}_{80} \mathrm{H}_{91} \mathrm{NSe}, 1145.6331$).

Attempted oxyselenation of methyl acrylate

To a solution of BpqSeI (1a) ($20.4 \mathrm{mg}, 18.9 \mu \mathrm{~mol}, 1.0 \mathrm{eq}$) in 0.8 mL of CHCl_{3} and $\mathrm{MeCN}(1: 1)$ were added NIS (4.2. mg , $18.6 \mu \mathrm{~mol}, 1.0 \mathrm{eq}$), methyl acrylate ($10.0 \mu \mathrm{~L}, 18.6 \mu \mathrm{~mol}, 6.0 \mathrm{eq}$), and methanol ($4.0 \mu \mathrm{~L}, 98.6 \mu \mathrm{~mol}, 5.0$ eq). The resulting reaction mixture was stirred at $25^{\circ} \mathrm{C}$ for 18 h before saturated aq. $\mathrm{Na}_{2} \mathrm{SO}_{3}$ was added. The two layers were separated, and the aqueous layer was extracted with CHCl_{3}. The combined organic layers were dried over MgSO_{4} and filtered. The filtrate was concentrated in vacuo. The crude product contained a complex mixture, and target compounds were not obtained.

Selenoxide elimination

To a solution of $\mathbf{5 c}(15.0 \mathrm{mg}, 13.2 \mu \mathrm{~mol}, 1.0 \mathrm{eq})$, triphenylmethane (internal standard, $1.60 \mathrm{mg}, 6.59 \mu \mathrm{~mol}, 0.5 \mathrm{eq})$ and $\mathrm{CDCl}_{3}(0.6 \mathrm{~mL})$ in vial was added $\mathrm{mCPBA}(77 \%, 3.1 \mathrm{mg}, 1.1 \mathrm{eq})$. The resulting mixture was transferred to J-Young NMR tube and monitored at $25^{\circ} \mathrm{C}$. After 30 min , sat. aq. NaHCO_{3} was added. The two layers were separated, and the aqueous layer was extracted with CHCl_{3}. The combined organic layers were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and filtered. To the filtrate in vial, $\mathrm{CDCl}_{3}(0.6 \mathrm{~mL})$ was added. The resulting mixture was transferred to J-Young NMR tube and monitored at $25^{\circ} \mathrm{C}$. After 96 h , the mixture was concentrated in vacuo. The crude mixture was purified by preparative TLC (hexane/ $\mathrm{CHCl}_{3}=3: 2$) to give product 8 ($1.6 \mathrm{mg}, 64 \%$ yield). ${ }^{1} \mathrm{H}$ NMR spectrum data was identical to that reported (A. B. Pulipaka and S. C. Bergmeier, Synthesis, 2008, 1420.).

NOESY spectrum ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of $\mathbf{5 c}$

The NOESY spectrum showed cross peaks of $\mathrm{Ha} / \mathrm{Hc}$ and $\mathrm{Hb} / \mathrm{Hc}$, which supported the anti-configurations of the products.

NMR spectra

Figure S1. ${ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ spectrum of $\mathbf{5 b}$.

Figure S2. ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of $\mathbf{5 b}$.

Figure S3. ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of $\mathbf{5 c}$.

Figure S4. ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of $\mathbf{5 c}$.

Figure S5. ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of $\mathbf{5 d}$.

Figure S6. ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of $\mathbf{5 d}$.

Figure S7. ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of $\mathbf{5 e}$.

Figure S8. ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of $\mathbf{5 e}$.

Figure S9. ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of $\mathbf{5 f}$.

Figure S10. ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of $\mathbf{5 f}$.

Figure S11. ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of $\mathbf{5 g}$.

Figure $\mathbf{S 1 2} .{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of $\mathbf{5 g}$.

Figure S13. ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of $\mathbf{5 h}$.

Figure $\mathbf{S 1 4 .}{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of $\mathbf{5 h}$.

Figure S15. ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of $\mathbf{5 i}$.

Figure S16. ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of $\mathbf{5 i}$.

Figure S17. ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of $\mathbf{5 j}$.

Figure S18. ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of $\mathbf{5 j}$.

Figure S19. ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of $\mathbf{5 k}$.

Figure S20. ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of $\mathbf{5 k}$.

Figure S21. ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of 7.

Figure S22. ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of 7.

Figure S23. ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of $\mathbf{1 0 a}$.

Figure S24. ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of $\mathbf{1 0 a}$.

Figure S25. ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of $\mathbf{1 0 b}$.

Figure S26. ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of $\mathbf{1 0 b}$.

Figure S27. ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of $\mathbf{1 0 c}$.

Figure S28. ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of $\mathbf{1 0 c}$.

Figure S29. ${ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ spectrum of $\mathbf{1 0 d}$.

Figure S30. ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of $\mathbf{1 0 d}$.

Figure S31. ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of $\mathbf{1 0 e}$.

Figure S32. ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of $\mathbf{1 0 e}$.

Figure S33. ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of $\mathbf{1 0 f}$.

Figure S34. ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of $\mathbf{1 0 f}$.

Figure S35. ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of $\mathbf{1 0 h}$.

Figure S36. ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of $\mathbf{1 0 h}$.

