Supporting information

High-Density Nickel-Cobalt Alloy Embedded in Nitrogen-Doped Carbon Nanosheets for Hydrogen Evolution Reaction

Lihua Hu, $^{a\#}$ Jialing Shi, $^{a\#}$ Zhiguang Peng, a Zefeng Zheng, a Huafeng Dong b and Tiejun Wang a,c*

- ^a School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, PR China
- ^b School of Physics and Optoelectronic Engineering, Guangdong University of Technology, Guangzhou 510006, PR China
- ^c Guangzhou Key Laboratory of Clean Transportation Energy and Chemistry, Guangdong University of Technology, Guangzhou 510006, PR China
- * Corresponding author: tjwang@gdut.edu.cn

[#] These authors contributed equally in this work

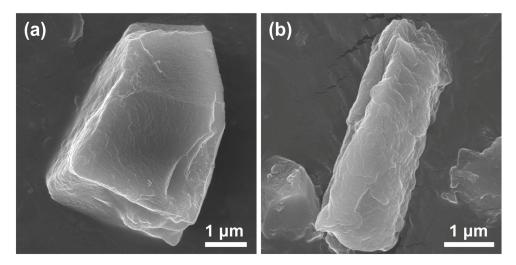
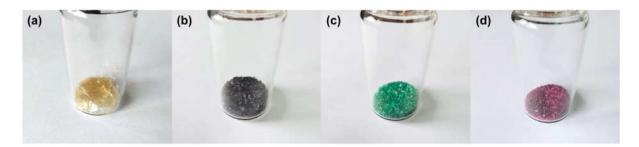



Figure S1. SEM images of the Ni₇Co₃–CS precursor.

Figure S2. Photographs of as-prepared **(a)** chitosan, **(b)** Ni₇Co₃–CS, **(c)** Ni–CS, and **(d)** Co–CS precursors.

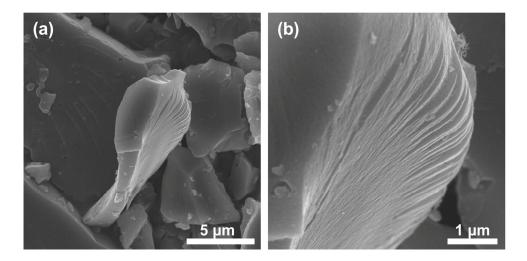


Figure S3. SEM images of NC.

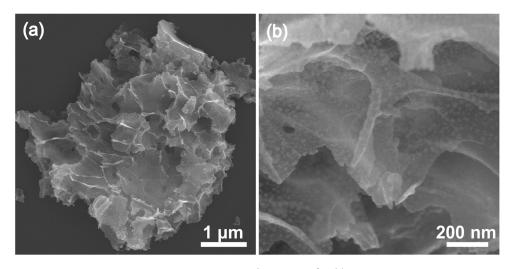


Figure \$4. SEM images of Ni/NC.

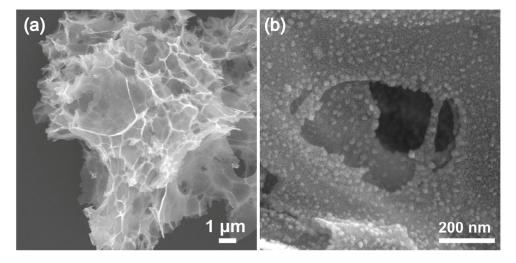
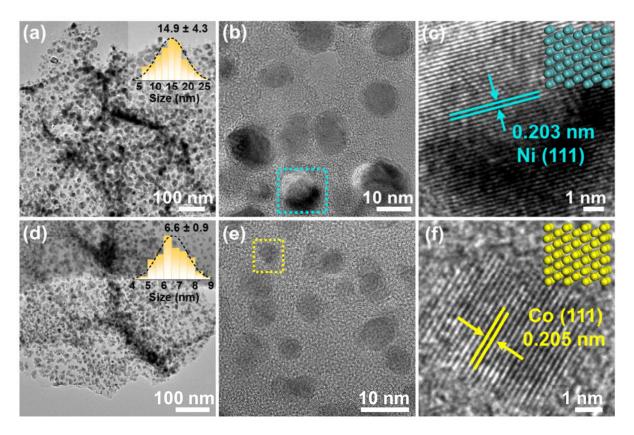
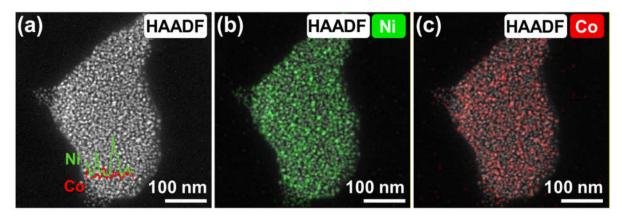
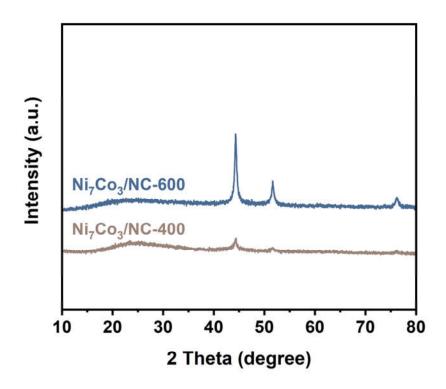
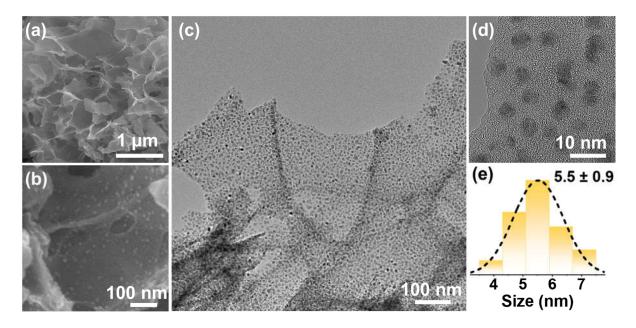




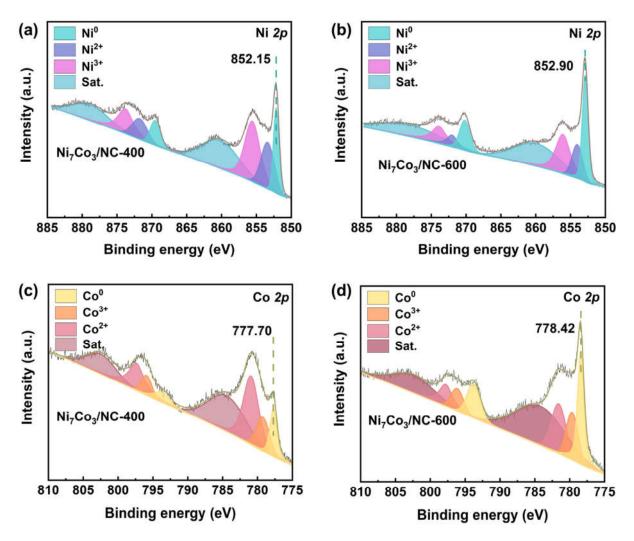
Figure S5. SEM images of Co/NC.

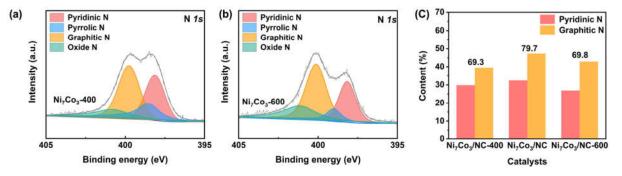
Figure S6. (a) TEM image (inset shows the particle size distribution), and (b-c) HR-TEM images of Ni/NC; (d) TEM image (inset shows the particle size distribution), and (e-f) HR-TEM images of Co/NC.

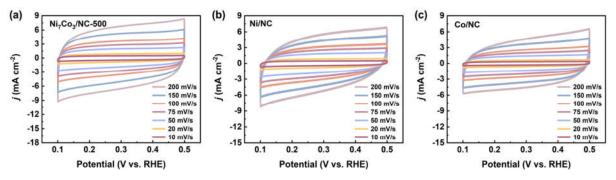
Figure S7. High annular dark-field scanning TEM (HAADF-STEM) and corresponding elemental mapping images of Ni₇Co₃/NC-500.

Figure S8. Water contact angle of (a) Ni₇Co₃/NC-500, (b) Ni/NC, and (c) Co/NC.



Figure S9. XRD patterns of Ni₇Co₃/NC-600 and Ni₇Co₃/NC-400.


Figure S10. (a-b) SEM images, **(c)** TEM image, and **(d)** HR-TEM image of Ni₇Co₃/NC-400. **(e)** The particle size distribution in c.


Figure S11. (a-b) SEM images, **(c)** TEM image, and **(d)** HR-TEM image of Ni₇Co₃/NC-600. **(e)** The particle size distribution in c.

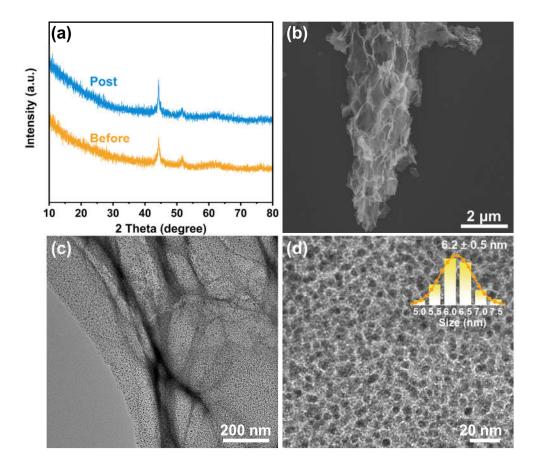
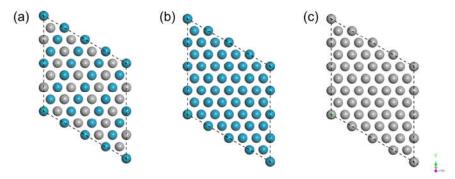
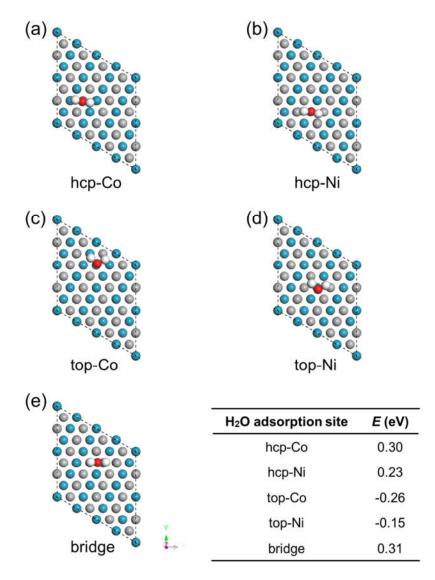
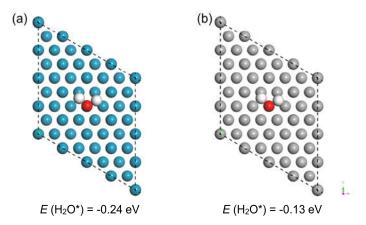
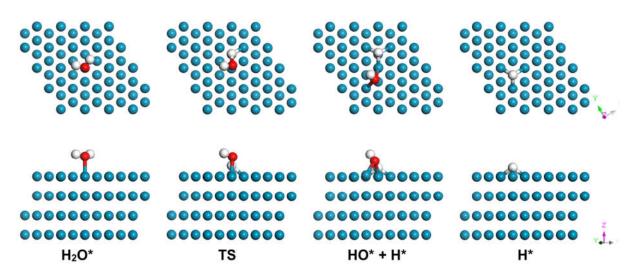

Figure S12. High resolution XPS spectra of Ni 2p of (a) Ni₇Co₃/NC-400 and (b) Ni₇Co₃/NC-600. High resolution XPS spectra of Co 2p of (c) Ni₇Co₃/NC-400 and (d) Ni₇Co₃/NC-600.

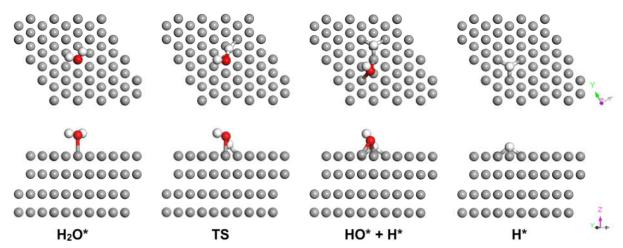
Figure S13. High resolution XPS spectra of N 1s of (a) Ni₇Co₃/NC-400 and (b) Ni₇Co₃/NC-600. (c) Surface pyridinic N and graphitic N percentages of Ni₇Co₃/NC-T determined by N 1s of XPS profile.

Figure S14. Cyclic voltammograms of **(a)** Ni₇Co₃/NC-500, **(b)** Ni/NC, and **(c)** Co/NC with various scan rates in 1 M KOH solution.

Figure S15. (a) XRD patterns of Ni₇Co₃/NC-500 before and after reaction 12 h; **(b)** SEM image and **(c-d)** TEM images of Ni₇Co₃/NC-500 after 12 h stability test.


Figure S16. The structure of (a) NiCo (111), (b) Ni (111), and (c) Co (111) (Ni: blue, Co: grey).


Figure S17. Determination of the possible adsorption site of water on NiCo(111) surface. The corresponding water adsorption energy are listed in the table on right (Ni: blue, Co: grey, O: red and H: white).

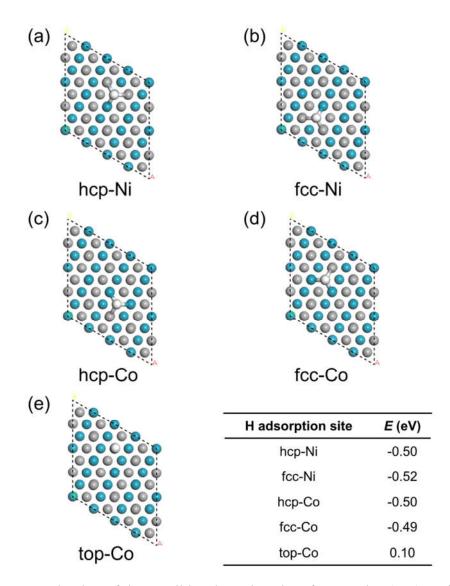

Figure S18. The water adsorption energy on **(a)** Ni (111) and **(b)** Co (111) (Ni: blue, Co: grey, O: red and H: white).

Figure S19. Top and side views of structures of the Ni (111) during alkaline HER process (Ni: blue, O: red and H: white).

Figure S20. Top and side views of structures of the Co (111) during alkaline HER process (Co: grey, O: red and H: white).

Figure S21. Determination of the possible adsorption site of H on NiCo(111) surface; the corresponding H adsorption energy are listed in the table on right (Ni: blue, Co: grey, and H: white).

Table S1. Metal content in Ni₇Co₃/NC-500, Ni /NC, and Co /NC determined by ICP-MS.

Catalysts	Ni (wt%)	Co (wt%)	n(Ni): n(Co)
Ni ₇ Co ₃ /NC-500	47	21	2.24
Ni/NC	72	-	-
Co/NC	-	57	-

Table S2. Metal content in Ni₇Co₃/NC-400 and Ni₇Co₃/NC-600 determined by ICP-MS.

Catalysts	Ni (wt%)	Co (wt%)	n(Ni): n(Co)
Ni ₇ Co ₃ /NC-400	37	17	2.17
Ni ₇ Co ₃ /NC-600	54	24	2.25

Table S3. Summary of the HER performances of Ni₇Co₃/NC-500, Ni/NC, and Co/NC in 1 M KOH solution.

Catalysts	η ₁₀ (mV)	η ₅₀ (mV)	Tafel Slope (mV dec ⁻¹)	$C_{ m dl}$ (a) (mF cm ⁻²)	R _{ct} (b) (ohm)	<i>j</i> ₀ ^(c) (mA cm ⁻²)
Ni ₇ Co ₃ /NC-500	90	175	64	32.5	11.19	7.4×10 ⁻¹
Ni/NC	130	230	82	25.8	14.54	4.4×10^{-1}
Co/NC	210	330	150	22.5	37.69	1.5×10^{-1}

a) Data were calculated according to the CV results;

b) Data were measured at $\eta = 200 \text{ mV}$;

c) Exchange current densities (j_0) were obtained from Tafel curves using extrapolation methods.