Supporting Information

Polydopamine Stabilizes Silver Nanoparticles as SERS Substrate for Efficient Detection of Myocardial Infarction

Ding Wang, Liping Bao, Huijun Li, Xiaoyu Guo, Weizhuo Liu, Xianying Wang, Xumin Hou, Bin He

Synthesis of PS@Ag First, take 0.5 mL of polystyrene solution, centrifuge 2-3 times with 4 mL of ethanol, and disperse in 0.5 mL of H₂O for the last time. Second, it was added to 80 mL of 98% H₂SO₄, and after ultrasonic dispersion, it was magnetically stirred at 100 rpm for 4 h at 40 °C. Then, they were washed with ethanol by centrifugation at 10,000 rpm and dispersed in ethanol. Then, the above solution and 0.1 g of polyvinylpyrrolidone were dissolved in 20 mL of ethanol, and Ag(NH₃)²⁺ solution was added at 450 rpm, and the reaction was stirred at room temperature for 1 h, followed by magnetic stirring in an oil bath at 70 °C for 7 h. Finally, it was washed with ethanol by centrifugation at 10,000 rpm and dispersed in ethanol, and the solution finally turned gray.

Synthesis of Ag@PDA Take 2 mL of the prepared Ag NPs, add it to 40 mL of H₂O, add 3 mL of 1.5 M Tris HCl and 2 mg/mL of 10 mL of DA aqueous solution, and react for 24 h. Centrifuge at 12,000 rpm for 15 min twice, and finally disperse in 10 ml H₂O.

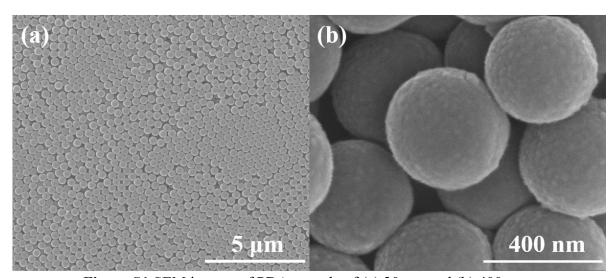


Figure S1 SEM images of PDA at scale of (a) 20 μm and (b) 400 nm.

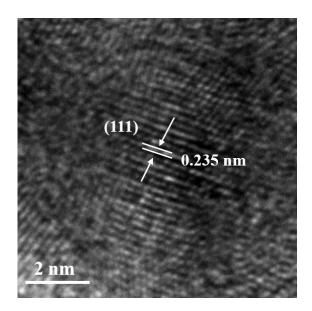
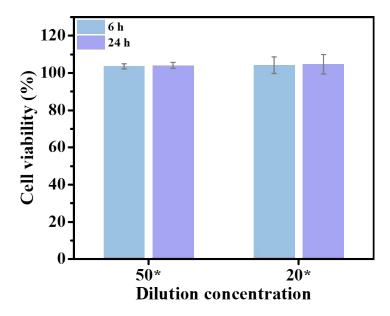
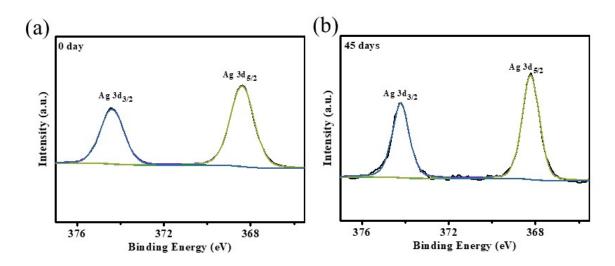
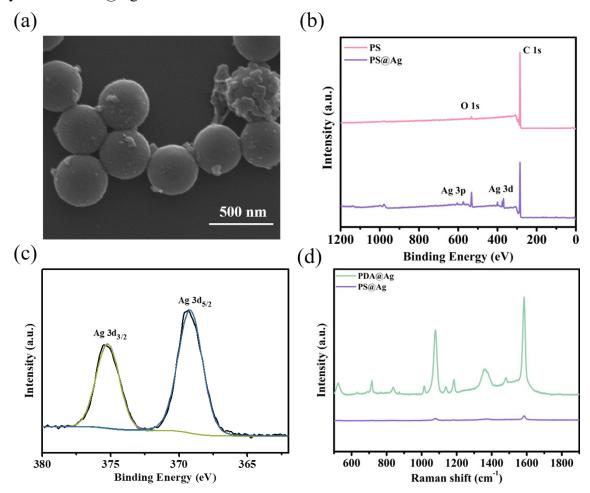
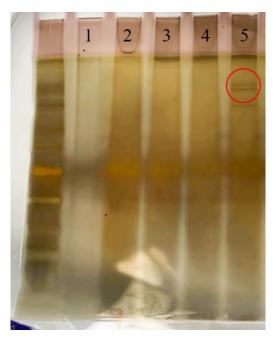


Figure S2 Enlarged image of fringe spacing of an individual Ag nanoparticle in PDA@Ag nanocomposites.


Figure S3 Cell viability of PDA@Ag under different dilution concentration after 6 h and 24 h.

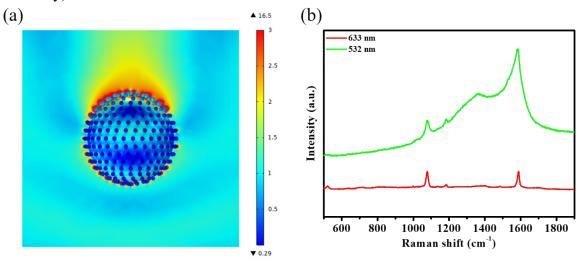

Figure S4 High-resolution XPS spectra of Ag3d in (a) fresh-prepared PDA@Ag and (b) 45 days-stored PDA@Ag.

Figure S5 (a) SEM image of PS@Ag; (b) XPS spectrum of PS and PS@Ag; (c) High-resolution XPS spectrum of Ag3d in PS@Ag; (b) Raman spectrum of 60 mM 4-MBA on PS@Ag and PDA@Ag.

Figure S6 Comparison of electrophoresis results according to the materials in the synthesis. (The materials used in the electrophoresis of bands No. 1-5 are as follows: 1.PDA@Ag; 2.PDA@Ag + 4-MBA; 3.PDA@Ag + 4-MBA + SH-PEG-COOH; 4.PDA@Ag + 4-MBA + SH-PEG-COOH + EDC/NHS; 5.PDA@Ag + 4-MBA + SH-PEG-COOH+ EDC/NHS + Antibody)

Figure S7 (a) Electrical field distributions of regularly distributed Ag NPs on the PDA. (The light source is 532 nm wavelength) (b) Raman spectrum of standard cTn I samples on PDA@Ag under 532 nm and 633 nm laser.

 Table S1 Determination of cTn I in Human Serum Samples with the proposed method.

Sample NO.	Spiked	Detection	Recovery	CV
	Concentration	Concentration	(%)	(%)
	(ng/mL)	(ng/mL)		
1	0.037	0.018	49.89%	10.96%
2	0.045	0.021	46.83%	0.83%
3	0.200	0.090	44.78%	1.97%
4	0.289	0.136	47.04%	4.58%
5	0.717	0.329	45.84%	10.10%
6	0.840	0.536	63.76%	3.53%
7	1.044	1.049	100.48%	4.45%
8	1.619	1.269	78.41%	5.37%
9	2.610	2.141	82.04%	6.51%
10	2.903	2.397	82.57%	9.53%
11	6.253	2.768	44.26%	5.85%
12	8.697	9.466	108.84%	1.76%
13	9.887	13.725	138.82%	4.94%
14	10.731	16.230	151.24%	3.21%