Supporting Information

Near-Field Spectroscopic Imaging of Exciton Quenching at Atomically Sharp MoS₂/WS₂ Lateral Heterojunction

He-Chun Chou¹, Xin-Quan Zhang², Shiue-Yuan Shiau³, Ching-Hang Chien¹, Po-wen Tang¹,

Chun-Te Sung^{1,2}, Yia-Chung Chang¹, Yi-Hsien Lee^{2*}, and Chi Chen^{1*}

¹Research Center for Applied Sciences, Academia Sinica, Taipei,115, Taiwan ²Department of Materials Science and Engineering, National Tsing-Hua University, Hsinchu, 300, Taiwan

³Physics Division, National Center for Theoretical Sciences, Taipei, 106, Taiwan

Figure S1 (a) Top: Peak shift mapping of the internal WS₂. Bottom: normalized NF-PL spectra of positions a1 to a4. (b) Peak shift mapping of the external MoS₂. Bottom: normalized NF-PL spectra of positions b1 to b4. The spectra from a1 to a4 show a \sim 35 meV shift, while the spectra from b1 to b4 show a \sim 20 meV shift.