Electronic Supplementary Material (ESI) for Nanoscale. This journal is © The Royal Society of Chemistry 2022

Supporting Information

Hydrogen Evolution Reaction Mechanism on Ti<sub>3</sub>C<sub>2</sub> MXene Revealed by In-situ/Operando Raman Spectroelectrochemistry

Denis Johnson, Hao-En Lai, Kyle Hansen, Perla Balbuena<sup>\*</sup>, and Abdoulaye Djire<sup>\*</sup>



**Figure S1.** The **a.** disassembled and **b.** assembled view of the in-situ/operando Raman flow cell. **c.** The flow cell assembled, placed under the Raman microscope, and connected to the Potentiostat for data collection.



**Figure S2.** Images of  $Ti_3C_2T_x$  MXene flake before, during, and after HER process in acidic electrolyte as viewed through Raman eyepiece.



**Figure S3.** In-situ/operando Raman spectra throughout the HER process in acidic electrolyte. Bottom spectrum corresponds to before HER and moving upward is as more cathodic potential is applied. The dotted line corresponds to the peak at 735 cm<sup>-1</sup>.



**Figure S4.** Images of  $Ti_3C_2T_x$  MXene flake before, during, and after HER process in neutral electrolyte as viewed through Raman eyepiece.



**Figure S5.** In-situ/operando Raman spectra throughout the HER process in neutral electrolyte. Bottom spectrum corresponds to before HER and moving upward is as more cathodic potential is applied. The dotted line corresponds to the peak at 735 cm<sup>-1</sup>.

**Table S1.** c-lattice parameter and interlayer spacing (d-lattice parameter) from DFT optimized

 structure of neutral charge cell

| Structure | Lattice      | Interlayer    | z position | z position | Bader  | Layer     |
|-----------|--------------|---------------|------------|------------|--------|-----------|
| Formula   | parameter c, | parameter, nm | of         | of         | atomic | thickness |

|                                               | nm    |       | bottom   | top atom | radius | (Å)    |
|-----------------------------------------------|-------|-------|----------|----------|--------|--------|
|                                               |       |       | atom (Å) | (Å)      | (Å)    |        |
|                                               |       |       | Ti       | Ti       |        |        |
| Ti <sub>3</sub> C <sub>2</sub>                | 2.292 | 1.562 | 9.016    | 13.881   | 1.217  | 7.299  |
|                                               |       |       | F        | F        |        |        |
| Ti <sub>3</sub> C <sub>2</sub> F <sub>2</sub> | 2.049 | 1.271 | 6.604    | 12.797   | 0.794  | 7.781  |
|                                               |       |       | Н        | Н        |        |        |
| Ti3C2O2H2                                     | 2.316 | 1.301 | 6.867    | 16.284   | 0.37   | 10.157 |
|                                               |       |       | 0        | 0        |        |        |
| Ti3C2O2                                       | 2.222 | 1.340 | 7.513    | 14.697   | 0.82   | 8.824  |



**Figure S6.** DFT calculated IR spectrum at 300K from the optimized unit cell structure. Linewidths are obtained from a high-quality Phono3py calculation <sup>1</sup>. From left to right:  $Ti_3C_2F_2$ ,  $Ti_3C_2O_2H_2$ ,

 $Ti_3C_2O_2$ ,  $Ti_3C_2$ . From top to bottom: oxidation (an electron removed from DFT simulation cell), neutral charge, reduction (an electron added to DFT simulation cell).

| Oxidation |                       |                     | Neutral Charge |                       |                         | Reduction |                       |                     |
|-----------|-----------------------|---------------------|----------------|-----------------------|-------------------------|-----------|-----------------------|---------------------|
| Ir. Rep.  | ν [cm <sup>-1</sup> ] | I [e <sup>2</sup>   | Ir. Rep.       | ν [cm <sup>-1</sup> ] | $v [cm^{-1}]$ I [ $e^2$ |           | ν [cm <sup>-1</sup> ] | I [e <sup>2</sup>   |
|           |                       | amu <sup>-1</sup> ] |                |                       | amu <sup>-1</sup> ]     |           |                       | amu <sup>-1</sup> ] |
| Bu        | 306.884               | 0.086839            | Au             | 277.210               | 0.376507                | Bu        | 278.038               | 1.306773            |
| Bu        | 494.195               | 0.972596            | Bu             | 277.211               | 0.376522                | Au        | 278.059               | 1.306677            |
| Bu        | 603.705               | 0.104873            | Bu             | 514.082               | 0.724299                | Bu        | 524.673               | 0.461816            |
| Au        | 603.711               | 0.10482             | Au             | 631.987               | 0.024477                | Bu        | 630.795               | 1.805062            |

**Table S2.** Highlights from IR spectra for bare  $Ti_3C_2$ 

Table S3. Highlights from IR spectra for  $Ti_3C_2O_2H_2$ 

| Oxidation |                       |                     | Neutral Charge |                       |                     | Reduction |                       |                     |
|-----------|-----------------------|---------------------|----------------|-----------------------|---------------------|-----------|-----------------------|---------------------|
| Ir.       | ν [cm <sup>-1</sup> ] | I [e <sup>2</sup>   | Ir.            | v [cm <sup>-1</sup> ] | I [e <sup>2</sup>   | Ir.       | v [cm <sup>-1</sup> ] | I [e <sup>2</sup>   |
| Rep.      |                       | amu <sup>-1</sup> ] | Rep.           |                       | amu <sup>-1</sup> ] | Rep.      |                       | amu <sup>-1</sup> ] |
| Bu        | 544.752               | 0.520564            | A'             | 492.842               | 3.029144            | Bu        | 491.571               | 3.789274            |
| Bu        | 582.716               | 0.857163            | A"             | 642.222               | 2.113524            | Bu        | 491.704               | 2.865518            |
| Bu        | 283.724               | 1.083679            | A'             | 642.236               | 2.109906            | Au        | 491.841               | 1.897722            |
| Au        | 283.716               | 1.083707            | A'             | 3651.655              | 0.809475            | Bu        | 654.838               | 3.491156            |
| Bu        | 545.044               | 1.147183            | A'             | 3666.612              | 0.951668            | Au        | 655.040               | 3.497118            |
| Au        | 545.018               | 1.147410            |                |                       |                     | Bu        | 3517.779              | 65.94866            |
| Bu        | 3360.582              | 1.769923            |                |                       |                     |           |                       |                     |

Table S4. Highlights from IR spectra for  $Ti_3C_2O_2$ 

| Oxidation |                       | Neutral Charge    |          |                       | Reduction         |          |                       |                   |
|-----------|-----------------------|-------------------|----------|-----------------------|-------------------|----------|-----------------------|-------------------|
| Ir. Rep.  | ν [cm <sup>-1</sup> ] | I [e <sup>2</sup> | Ir. Rep. | v [cm <sup>-1</sup> ] | I [e <sup>2</sup> | Ir. Rep. | ν [cm <sup>-1</sup> ] | I [e <sup>2</sup> |

|   |         | amu <sup>-1</sup> ] |    |         | amu <sup>-1</sup> ] |    |         | amu <sup>-1</sup> ] |
|---|---------|---------------------|----|---------|---------------------|----|---------|---------------------|
| А | 408.759 | 5.030507            | Bu | 321.459 | 11.20945            | Au | 316.182 | 4.418034            |
| А | 413.489 | 5.031629            | Au | 322.387 | 11.05607            | Bu | 316.619 | 4.390141            |
| А | 496.593 | 3.861284            | Bu | 489.571 | 1.843076            | Bu | 534.078 | 2.485161            |
| А | 497.201 | 3.676383            | Au | 490.920 | 1.895808            | Au | 535.036 | 2.462244            |
| А | 528.447 | 0.934881            | Bu | 574.053 | 2.385487            |    |         |                     |

Table S5. Highlights from IR spectra for  $Ti_3C_2F_2$ 

| Oxidation |                       |                     | Neutral Charge |                       |                     | Reduction |                       |                                    |
|-----------|-----------------------|---------------------|----------------|-----------------------|---------------------|-----------|-----------------------|------------------------------------|
| Ir.       | ν [cm <sup>-1</sup> ] | I [e <sup>2</sup>   | Ir.            | v [cm <sup>-1</sup> ] | I [e <sup>2</sup>   | Ir.       | ν [cm <sup>-1</sup> ] | I [e <sup>2</sup> amu <sup>-</sup> |
| Rep.      |                       | amu <sup>-1</sup> ] | Rep.           |                       | amu <sup>-1</sup> ] | Rep.      |                       | 1]                                 |
| Au        | 291.880               | 1.300046            | Au             | 242.454               | 0.437698            | Bu        | 173.891               | 5.757361                           |
| Bu        | 291.896               | 1.300390            | Bu             | 242.586               | 0.438243            | Au        | 173.926               | 5.731884                           |
| Bu        | 532.146               | 1.107718            | Bu             | 265.803               | 0.306135            | Au        | 666.927               | 58.657078                          |
| Au        | 532.143               | 1.108118            | Au             | 266.112               | 0.305828            | Bu        | 666.967               | 58.462026                          |
| Bu        | 583.917               | 1.238923            | Bu             | 599.664               | 0.325586            |           |                       |                                    |
|           |                       |                     | Bu             | 664.535               | 0.827526            |           |                       |                                    |
|           |                       |                     | Au             | 664.720               | 0.828577            |           |                       |                                    |

**Table S6.** Highlights from IR spectra for Ti<sub>3</sub>C<sub>2</sub>O(OH)

| Oxidation |                       |                     | Neutral Charge                                       |  |                     | Reduction |                       |                     |
|-----------|-----------------------|---------------------|------------------------------------------------------|--|---------------------|-----------|-----------------------|---------------------|
| Ir. Rep.  | v [cm <sup>-1</sup> ] | I [e <sup>2</sup>   | Ir. Rep. $\nu$ [cm <sup>-1</sup> ] I [e <sup>2</sup> |  |                     | Ir. Rep.  | ν [cm <sup>-1</sup> ] | I [e <sup>2</sup>   |
|           |                       | amu <sup>-1</sup> ] |                                                      |  | amu <sup>-1</sup> ] |           |                       | amu <sup>-1</sup> ] |

|  | A" | 275.24 | 0.42 |  |  |
|--|----|--------|------|--|--|
|  | A' | 275.34 | 0.42 |  |  |
|  | A' | 587.85 | 1.43 |  |  |
|  | A" | 587.96 | 1.43 |  |  |



**Figure S7.** DFT calculated Raman spectra at 300K from the optimized unit cell structure. Linewidths are obtained from a high-quality Phono3py calculation <sup>1</sup>. From left to right:  $Ti_3C_2F_2$ ,  $Ti_3C_2O_2H_2$ ,  $Ti_3C_2O_2$ ,  $Ti_3C_2$ . From top to bottom: (an electron removed from DFT simulation cell), neutral charge, reduction (an electron added to DFT simulation cell).



**Figure S8.** Simulated IR spectrum and Raman spectrum result at 300K for optimized unit cell structure  $Ti_3C_2(OH)(H)$ , whose linewidths are obtained from a high-quality Phono3py calculation.<sup>1</sup>

| Table S7. Effects of surface charge on bond lengths (Å). Ti <sub>1</sub> is the surface Ti atom, Ti <sub>2</sub> is the inner |
|-------------------------------------------------------------------------------------------------------------------------------|
| Ti atom.                                                                                                                      |

| System                                           | Bond   |           |       |         |           |       |
|--------------------------------------------------|--------|-----------|-------|---------|-----------|-------|
|                                                  | Til-Cl | oxidation |       | neutral | reduction |       |
| Ti <sub>3</sub> C <sub>2</sub>                   |        |           | 2.061 | 2.049   |           | 2.054 |
| $Ti_3C_2F_2$                                     |        |           | 2.148 | 2.07    |           | 2.047 |
| Ti <sub>3</sub> C <sub>2</sub> (OH) <sub>2</sub> |        |           | 2.143 | 2.081   |           | 2.074 |
| Ti <sub>3</sub> C <sub>2</sub> O <sub>2</sub>    |        |           | 2.325 | 2.191   |           | 2.153 |
|                                                  | C1-Ti2 | oxidation |       | neutral | reduction |       |
| Ti <sub>3</sub> C <sub>2</sub>                   |        |           | 2.269 | 2.217   |           | 2.213 |
| $Ti_3C_2F_2$                                     |        |           | 2.225 | 2.191   |           | 2.193 |
| Ti <sub>3</sub> C <sub>2</sub> (OH) <sub>2</sub> |        |           | 2.217 | 2.192   |           | 2.191 |
| Ti <sub>3</sub> C <sub>2</sub> O <sub>2</sub>    |        |           | 2.182 | 2.157   |           | 2.165 |



**Figure S9.** Individual atomic projected density of states and d-band center, where the Fermi energy is located at zero. From left to right:  $Ti_3C_2F_2$ ,  $Ti_3C_2O_2H_2$ ,  $Ti_3C_2O_2$ ,  $Ti_3C_2$ . From top to bottom: oxidation (remove an electron from simulation cell), neutral charge, reduction (add an electron to simulation cell). where  $Ti_1$  is outer Ti atom,  $Ti_2$  is the inner Ti atom.



**Figure S10.** Illustration of ICOOP calculation with optimized unit cell structures (represented with 3 x 3 supercell), side view, top view, and its supercell structure. Gray, red, brown, blue, and green represent Ti, O, C, F, H, respectively.

**Table S8.** ICOHP (in eV) of selected pairs of  $Ti_3C_2T_x$  slabs. ICOHP integrals are calculated from CHOP energies up to the Fermi level. Negative values indicate strong bonds, the more negative, the stronger the bonds. Positive values indicate weak bonds.  $Ti_1$  is outer Ti atom,  $Ti_2$  is the inner Ti atom. The atoms are numbered as in Figure S9.

|                                                              | Atom   | ICOHP (eV) | ICOHP (eV)     | ICOHP (eV) |
|--------------------------------------------------------------|--------|------------|----------------|------------|
| System                                                       | pair   | Oxidation  | Neutral charge | Reduction  |
| Ti <sub>3</sub> C <sub>2</sub>                               | C1-Ti1 | -3.829     | -3.482         | -3.054     |
|                                                              | C1-Ti2 | -2.542     | -2.640         | -2.295     |
| Ti <sub>3</sub> C <sub>2</sub> O <sub>2</sub>                | C1-Ti1 | -2.304     | -2.776         | -2.701     |
|                                                              | C1-Ti2 | -0.025     | -0.036         | -0.031     |
|                                                              | O1-Ti1 | -4.508     | -3.880         | -3.362     |
| Ti <sub>3</sub> C <sub>2</sub> O <sub>2</sub> H <sub>2</sub> | C1-Ti1 | -3.373     | -3.530         | -3.467     |
|                                                              | C1-Ti2 | -0.026     | -0.031         | -0.031     |
|                                                              | O1-Ti1 | -2.538     | -2.121         | -2.056     |
|                                                              | H1-O1  | -8.517     | -7.703         | -7.453     |

| Ti <sub>3</sub> C <sub>2</sub> F <sub>2</sub> | C1-Ti1 | -3.425 | -3.730 | -3.586 |
|-----------------------------------------------|--------|--------|--------|--------|
|                                               | C1-Ti2 | -0.024 | -0.029 | -0.023 |
|                                               | F1-Ti1 | -2.415 | -1.925 | -1.631 |

**Table S9.** Details of COHP calculations: Absolute charge spilling (%) value for  $Ti_3C_2T_x$  terminated group (max is 2.38% / range from 0.88%-2.38%)

|                                                              | Oxidation                    | Neutral charge               | Reduction                    |  |
|--------------------------------------------------------------|------------------------------|------------------------------|------------------------------|--|
|                                                              | abs. charge spilling:<br>(%) | abs. charge spilling:<br>(%) | abs. charge spilling:<br>(%) |  |
| Ti <sub>3</sub> C <sub>2</sub>                               | 1.55%                        | 1.60%                        | 2.14%                        |  |
| Ti <sub>3</sub> C <sub>2</sub> O <sub>2</sub>                | 1.02%                        | 1.05%                        | 2.38%                        |  |
| Ti <sub>3</sub> C <sub>2</sub> O <sub>2</sub> H <sub>2</sub> | 0.98%                        | 1.20%                        | 2.05%                        |  |
| Ti <sub>3</sub> C <sub>2</sub> F <sub>2</sub>                | 0.89%                        | 0.97%                        | 1.29%                        |  |

Basis sets for each atom in the COHP calculations:

C: 2p 2s H: 1s O: 2p 2s Ti: 3d 3p 3s 4s F: 2p 2s

**Table S10**. Absolute and relative internal energies of optimized slabs, in eV. The relative energies are calculated with respect to the energy of the pristine slab,  $Ti_3C_2$ .

| System                                          | Internal energy, eV |         |           | Relative internal energy, eV |         |           |
|-------------------------------------------------|---------------------|---------|-----------|------------------------------|---------|-----------|
|                                                 | Oxidation           | Neutral | Reduction | Oxidation                    | Neutral | Reduction |
| Ti <sub>3</sub> C <sub>2</sub> O <sub>2</sub>   | -57.837             | -63.680 | -61.929   | -19.102                      | -19.795 | -19.198   |
| Ti <sub>3</sub> C <sub>2</sub> O <sub>2</sub> H |                     |         |           |                              |         |           |
| 2                                               | -68.297             | -70.190 | -67.787   | -29.562                      | -26.305 | -25.056   |
| Ti <sub>3</sub> C <sub>2</sub> F <sub>2</sub>   | -54.816             | -58.368 | -55.801   | -16.081                      | -14.483 | -13.070   |
| Ti <sub>3</sub> C <sub>2</sub> O <sub>2</sub> H |                     | -66.878 |           |                              | -22.993 |           |
| Ti <sub>3</sub> C <sub>2</sub>                  | -38.735             | -43.885 | -42.731   |                              |         |           |



**Figure S12.** Energy profiles for the proposed mechanisms. Top: Reactions (1) to (3). Bottom: Reactions (4) and (5).

Note: All the DFT data for Raman and IR are available from the authors upon request.

## References

1 A. Togo and I. Tanaka, *Scripta Materialia*, 2015, **108**, 1-5.