Electronic Supplementary Information

Electrical Control of Biexciton Auger Recombination in Single CdSe/CdS Nanocrystals

Ying Tang,^a Qilin Qin,^a Hongyu Yang,^b Shengnan Feng,^a Chunfeng Zhang,^a Jiayu Zhang,^{*b} Min Xiao,^{ac} and Xiaoyong Wang^{*a}

^a National Laboratory of Solid State Microstructures, School of Physics, and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093, China

^b Advanced Photonics Center, School of Electronic Science and Engineering, Southeast University, Nanjing 210096, China

^c. Department of Physics, University of Arkansas, Fayetteville, Arkansas 72701, USA

*Correspondence to J.Z. (jyzhang@seu.edu.cn) or X.W. (wxiaoyong@nju.edu.cn)

Fig. S1 Transmission electron microscopy image of CdSe/CdS *g*NCs.

Fig. S2 Solution absorption and emission spectra of CdSe/CdS gNCs.

Fig. S3 Fabrication of electrodes. **(a)** A clean glass substrate was first prepared. **(b)** The substrate was next spin-coated with the photoresist, on top of which an interdigitated pattern was printed by extreme ultraviolet (EUV) lithography using a photomask. **(c)** The Au and Cr layers with the respective thicknesses of 80 and 5 nm were then deposited by the physical vapor deposition (PVD) system. **(d)** Finally, the substrate was soaked in acetone and ultrasonically cleaned for about 10 min to lift off the photoresist. In the as-fabricated sample, each electrode had a width of 10 μ m and the two nearby electrodes were spatially separated by 5 μ m.

Fig. S4 Second-order photon correlation curves measured at $\langle N \rangle = ~0.1$ for three single CdSe/CdS gNCs with the $g^{(2)}(0)$ values of **(a)** ~0.145, **(b)** ~0.160 and **(c)** ~0.149, respectively.

Fig. S5 The biexciton Auger lifetime $\tau_{XX,Auger}$ plotted as a function of the single-exciton radiative lifetime $\tau_{X, rad}$ for ~50 single CdSe/CdS gNCs excited at $\langle N \rangle = \sim$ 0.5 without the electric field.

Fig. S6 (a) PL intensity time trace measured with a binning time of 10 ms for a single CdSe/CdS gNC excited at $\langle N \rangle = \sim 0.5$, where the "on", "gray" and "off" states are marked by the red, gray and blue shadings, respectively. **(b)** PL decay curves extracted from (a) for the "on", "gray" and "off" states, respectively. The PL decay curve of "on" state is fitted by a biexponential function with the fast and slow lifetimes of ~3.5 and ~36.8 ns, respectively. The PL decay curves of "gray" and "off" states are both fitted by the single-exponential functions with the respective lifetimes of ~11.8 and ~3.2 ns, respectively.

Fig. S7 (a) PL spectra measured at $\langle N \rangle = ~0.1$ for a single CdSe/CdS *g*NC, showing a red shift when the electric field of either 200 or -200 kV/cm is applied. **(b)** PL spectra measured at $\langle N \rangle = ~0.1$ for a single CdSe/CdS *g*NC, showing a red (blue) shift when the electric field of 200 (-200) kV/cm is applied. **(c)** PL spectra measured at $\langle N \rangle = ~0.1$ for a single CdSe/CdS *g*NC, showing no obvious shift in the PL peak when the electric field of either 200 or -200 kV/cm is applied. In (a)-(c), the black dashed lines mark the peak positions of the zero-field PL spectra.

Fig. S8 (a) PL decay curves measured for a single CdSe/CdS *g*NC from the first type at the electric fields of -400, 0 and 400 kV/cm, respectively. **(b)** PL decay curves measured for a single CdSe/CdS *g*NC from the second type at the electric fields of -400, 0 and 200 kV/cm, respectively. **(c)** PL decay curves measured for a single CdSe/CdS *g*NC from the third type at the electric fields of -400, 0 and 400 kV/cm, respectively. **(d)** PL decay curves measured for a single CdSe/CdS *g*NC from the fourth type at the electric fields of -400, 0 and 400 kV/cm, respectively. **(d)** PL decay curves measured for a single CdSe/CdS *g*NC from the third type at the electric fields of -400, 0 and 400 kV/cm, respectively. **(d)** PL decay curves measured for a single CdSe/CdS *g*NC from the fourth type at the electric fields of -400, 0 and 400 kV/cm, respectively. In (a)-(d), the three PL decay curves are offset to each other for clarity.

Fig. S9 (a) PL decay curves measured at $\langle N \rangle = \sim 0.5$ for a single CdSe/CdS *g*NC from the first type and each fitted by the solid line using a bi-exponential function. At 0 kV/cm, the obtained $\tau_{X, rad}$, $\tau_{XX,total}$ and $\tau_{XX,Auger}$ values are ~ 77.7 , ~ 1.6 and ~ 1.7 ns, respectively. At -400 kV/cm, the obtained $\tau_{X, rad}$, $\tau_{XX,total}$ and $\tau_{XX,Auger}$ values are ~ 83.0 , ~ 1.9 and ~ 2.1 ns, respectively. At 400 kV/cm, the obtained $\tau_{X, rad}$, $\tau_{XX,total}$ and $\tau_{XX,Auger}$ values are ~ 82.2 , ~ 1.9 and ~ 2.1 ns, respectively. **(b)** PL decay curves measured at $\langle N \rangle = \sim 0.5$ for a single CdSe/CdS *g*NC from the second type and each fitted by the solid line using a bi-exponential function. At 0 kV/cm, the obtained $\tau_{X, rad}$, $\tau_{XX,total}$ and $\tau_{XX,Auger}$ values are ~ 64.2 , ~ 1.8 and ~ 2.1 ns, respectively. At -400 kV/cm, the obtained $\tau_{X, rad}$, $\tau_{XX,total}$ and $\tau_{XX,Auger}$ values are ~ 69.9 , ~ 2.2 and ~ 2.5 ns, respectively. At -200 kV/cm, the obtained $\tau_{X, rad}$, $\tau_{XX,total}$ and $\tau_{XX,Auger}$ values are ~ 69.9 , ~ 2.2 and ~ 2.5 ns, respectively. At -200 kV/cm, the obtained $\tau_{X, rad}$, $\tau_{XX,total}$ and $\tau_{XX,Auger}$ values are ~ 69.9 , ~ 2.2 and ~ 2.5 ns, respectively. At -200 kV/cm, the obtained $\tau_{X, rad}$, $\tau_{XX,total}$ and $\tau_{XX,Auger}$ values are ~ 61.6 , ~ 1.6 and ~ 1.8 ns, respectively. At 400 kV/cm, the obtained $\tau_{X, rad}$, $\tau_{XX,total}$ and $\tau_{XX,Auger}$ values are ~ 72.0 , ~ 3.3 and ~ 4.0 ns, respectively. The PL peak is blue-shifted at -200 kV/cm and red-shifted at ±400 kV/cm, as compared to the one measured at 0 kV/cm. (c) PL decay curves

measured at $\langle N \rangle = \sim 0.5$ for a single CdSe/CdS *g*NC from the third type and each fitted by the solid line using a bi-exponential function. At 0 kV/cm, the obtained $\tau_{X, rad}$, $\tau_{XX,total}$ and $\tau_{XX,Auger}$ values are ~ 77.7 , ~ 3.6 and ~ 4.4 ns, respectively. At -400 kV/cm, the obtained $\tau_{X, rad}$, $\tau_{XX,total}$ and $\tau_{XX,Auger}$ values are ~ 80.0 , ~ 4.5 and ~ 5.9 ns, respectively. At 400 kV/cm, the obtained $\tau_{X, rad}$, $\tau_{XX,total}$ and $\tau_{XX,Auger}$ values are ~ 78.9 , ~ 5.3 and ~ 7.3 ns, respectively. **(d)** PL decay curves measured at $\langle N \rangle = \sim 0.5$ for a single CdSe/CdS *g*NC from the fourth type and each fitted by the solid line using a bi-exponential function. At 0 kV/cm, the obtained $\tau_{X, rad}$, $\tau_{XX,total}$ and $\tau_{XX,Auger}$ values are ~ 107.4 , ~ 3.7 and ~ 4.3 ns, respectively. At -400 kV/cm, the obtained $\tau_{X, rad}$, $\tau_{XX,total}$ and $\tau_{XX,Auger}$ values are ~ 103.6 , ~ 5.2 and ~ 6.5 ns, respectively. At 400 kV/cm, the obtained $\tau_{X, rad}$, $\tau_{XX,total}$ and $\tau_{XX,Auger}$ values are ~ 101.0 , ~ 4.4 and ~ 5.3 ns, respectively. In (a)-(d), the three or four PL decay curves are offset to each other for clarity.

Fig. S10 PL decay curves measured for a single CdSe/CdS *g*NC at $\langle N \rangle = \sim 0.1$, ~ 0.5 and ~ 1.0 , respectively. At $\langle N \rangle = \sim 0.1$, the PL decay curve can be fitted by a single-exponential function with the lifetime of ~ 49.8 ns; At $\langle N \rangle = \sim 0.5$, the PL decay curve can be fitted by a biexponential function with the long and short lifetimes of ~ 59.0 and ~ 4.4 ns, respectively; At $\langle N \rangle = \sim 1.0$, the PL decay curve can only be fitted by a tri-exponential function with the long, medium and short lifetimes of ~ 48.2 , ~ 4.9 and ~ 1.3 ns, respectively. The three PL decay curves are offset to each other for clarity.

Fig. S11 (a)-(c) PL intensity time traces measured with a binning time of 10 ms for a single CdSe/CdS gNC excited at < N > = ~0.5, showing that the PL blinking effect can be suppressed to some degree at the electric fields of ±400 kV/cm. PL decay curves measured for this single CdSe/CdS gNC are plotted in Figure S9c, where both the single-exciton radiative lifetime and the biexciton lifetime increase upon the application of a positive or negative electric field.

Table S1 Classification of the 47 single CdSe/CdS gNCs studied in the experiment into four types, according to their different electric-field induced changes in the PL spectra and PL lifetimes. Here X and XX denote single exciton and biexciton, respectively.

Types	PL spectra	PL lifetimes
Type 1 (5/47)	symmetric shift about zero field	increase for both X and XX
Type 2 (4/47)	asymmetric shift about zero field	increase for X and XX (red shift)
		decrease for X and XX (blue shift)
Туре 3 (30/47)	no shift with the field	increase for both X and XX
Type 4 (8/47)	no shift with the field	decrease for X and increase for XX