Supporting Information

Super-Resolution Imaging of Photogenerated Charges on $CdS/g-C₃N₄$ Heterojunctions and its Correlation with Photoactivity

Shuyang Wu, a Jinn-Kye Lee, a Pei Chong Lim, a Rong Xu, b Zhengyang Zhang a,*

^a Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, Singapore 637371.

b School of Chemical and Biomedical Engineering, Nanyang Technological University, 62 Nanyang Drive, Singapore 637459.

Corresponding Author E-mail: zhang.zy@ntu.edu.sg

Fig. S1 XRD patterns of CdS, g-C3N4, CS/CN-II and CS/CN-Z.

Fig. S2 Morphology of CdS and g-C3N4. FESEM and TEM images of (a, b) CdS and (c, d) g-

 C_3N_4 .

Fig. S3 XPS survey spectra of (a) CdS, (b) g-C3N4, (c) CS/CN-II and (d) CS/CN-Z.

Fig. S4 XPS spectra of (a) C 1s, (b) N 1s, (c) Cd 3d and (d) S 2p for CdS, g-C3N⁴ and CS/CN-II.

Fig. S5 UV-vis DRS spectra of CdS, g-C3N4, CS/CN-II, CS/CN-Z and physically mixed $CdS/C₃N₄.$

Fig. S6 Tauc plots of as-prepared samples for bandgap analysis.

Fig. S7 UPS spectra of (a) CdS, (b) $g-C_3N_4$, (c) CS/CN-II and (d) CS/CN-Z.

Fig. S8 Photocatalytic H₂ generation for 6 h over CS/CN-II using different sacrificial reagents (50 mg CS/CN-II, 1 wt% Pt, 300 W Xe lamp, > 400 nm).

Fig. S9 Charge distribution on CS/CN-II and CS/CN-Z. HRTEM images of CS/CN-II with (a) 1 wt% Pt and (b) 3 wt% PbO₂ loaded, and CS/CN-Z with (c) 1 wt% Pt and (d) 3 wt% PbO₂ loaded. Insets: HRTEM images of the marked positions in the respective images.

Fig. S10 Percentages of Pt and Pb species after photo-deposition. XPS spectra of Pt 4f in 1 wt% Pt loaded (a) CS/CN-II and (b) CS/CN-Z. XPS spectra of Pb 4f in 3 wt% PbO₂ loaded (a) CS/CN-II and (b) CS/CN-Z.

Fig. S11 Localize the center position of single fluorescent molecules with nanometer resolution. (a) Typical fluorescence image of a single resorufin molecule on CdS nanorods under laser excitation. (b) 2D Gaussian fitting of the fluorescence intensity profile with nanometer precision of \pm 16 nm.

Fig. S11a is a typical fluorescence image of a single resorufin molecule on CdS nanorods. The fluorescence intensity spreads over a few pixels as a point spread function. Generally, the localization precision can be determined using the method reported in the previous work.¹ As shown in **Fig. S11b**, the center position can be determined by fitting the intensity signals with 2D elliptical Gaussian functions (**Eq. S1**):

$$
I(x,y) = A + B * exp_{x}^{[x]}(-\left(\frac{(x-x_0)^2}{2S_x^2} + \frac{(y-y_0)^2}{2S_y^2}\right))
$$
\n(S1)

where $({}^{x_0}, {}^{y_0})$ is the center position, A is the background level, B is the peak intensity at $({}^{x_0}, {}^{y_0})$ y_0 , S_x and S_y are the standard deviations of the Gaussian distribution along the x- and y-axes, respectively. The localization precision $(\sigma_{j},{}_{j=x,y})$ can be calculated based on the pixel size of the camera, the photons collected and background noise level using **Eq. S2**:

$$
\sigma_j = \sqrt{\left(\frac{S_j^2}{N} + \frac{a^2/12}{N} + \frac{8\pi S_j^4 b^2}{a^2 N^2}\right)}
$$
(S2)

where N is the photons collected, a is the pixel size, and b is the background noise in photons. In the example shown in **Fig. S11**, the parameters are determined to be $S_x = 133$ nm, $S_y = 131$ nm, $a = 160$ nm, $N = 612$ and $b = 16$. Thus, $\sigma_x = 16$ nm and $\sigma_y = 15$ nm are obtained. The average localization precision is calculated to be $\sigma_{xy} = 16$ nm using **Eq. S3**:

$$
\sigma_{xy} = (\sigma_x + \sigma_y)/2 \tag{S3}
$$

Fig. S12 (a, d) Conventional brightfield images, (b, e) SRM images and (c, f) density maps (bin size: $25 \text{ nm} \times 25 \text{ nm}$) of pure CdS with resazurin. Scale bar: 1 µm.

Fig. S13 Conventional brightfield images of pure CdS with amplex red (a) before irridiation and (b) after irradiation. Scale bar: $1 \mu m$.

Fig. S14 (a, d) Conventional brightfield images, (b, e) SRM images and (c, f) density maps (bin size: 25 nm \times 25 nm) of pure g-C₃N₄ with resazurin. Scale bar: 1 µm.

Fig. S15 (a, d) Conventional brightfield images, (b, e) SRM images and (c, f) density maps (bin size: 25 nm \times 25 nm) of pure g-C₃N₄ with amplex red (The dashed lines are the outlines of g-C₃N₄ in the brightfield images). Scale bar: 1 μ m.

Fig. S16 Conventional brightfield images of CS/CN-Z with amplex red (a) before irridiation and (b) after irradiation. Scale bar: $1 \mu m$.

Fig. S17 HRTEM images of (a) CS/CN-II and (b) CS/CN-Z.

Table S1. Summary of typical CdS/g-C₃N₄ composites for photocatalytic H₂ generation.

Table S2. Pt loading based on ICP measurement and percentages of Pt and Pb species observed from XPS spectra on CS/CN-II and CS/CN-Z after photoreactions.

	1% Pt ^{a)}			3% PbO ₂	
	Pt loading ^{b)} $(Pt^{0 c}) (%)$	Pt^{0} (%)	$Pt^{2+}($ %)	$Pb^{4+}($ %)	$Pb^{2+}($ %)
CS/CN-II	0.79(0.69)	87.4	12.6	93.1	6.9
$CS/CN-Z$	0.71(0.56)	79.5	20.5	89.0	11.0

^{a)} Theoretical loading based on the amount of Pt precursor is 1 wt%; ^{b)} by IPC measurement; ^{c)} total Pt% multiply by Pt^{00} % from XPS results.

Reference

1. T.-X. Huang, B. Dong, S. L. Filbrun, A. A. Okmi, X. Cheng, M. Yang, N. Mansour, S. Lei and N. Fang, *Sci. Adv.*, 2021, **7**, eabj4452.

2. W. Li, C. Feng, S. Dai, J. Yue, F. Hua and H. Hou, *Appl. Catal. B: Environ.*, 2015, **168**, 465-471.

3. N. Güy, *Appl. Surf. Sci.*, 2020, **522**, 146442.

4. H. Pang, Y. Jiang, W. Xiao, Y. Ding, C. Lu, Z. Liu, P. Zhang, H. Luo and W. Qin, *J. Alloys Compd.*, 2020, **839**, 155684.

5. B. Chong, L. Chen, D. Han, L. Wang, L. Feng, Q. Li, C. Li and W. Wang, *Chinese J. Catal.*, 2019, **40**, 959-968.

6. K. Wang, X. Wang, H. Pan, Y. Liu, S. Xu and S. Cao, *Int. J. Hydrog. Energy*, 2018, **43**, 91-99.

7. Z. L. Fang, H. F. Rong, L. Y. Zhou and P. Qi, *J. Mater. Sci.*, 2015, **50**, 3057-3064.

8. H. Zhao, X. Ding, B. Zhang, Y. Li and C. Wang, *Sci. Bull.*, 2017, **62**, 602-609.

9. L. Qian, Y. Hou, Z. Yu, M. Li, F. Li, L. Sun, W. Luo and G. Pan, *Mol. Catal.*, 2018, **458**, 43-51.

10. Z. Wang, Z. Wang, X. Zhu, C. Ai, Y. Zeng, W. Shi, X. Zhang, H. Zhang, H. Si and J. Li, *Small*, 2021, 2102699.