Supporting Information

Super-Resolution Imaging of Photogenerated Charges on CdS/g-C₃N₄ Heterojunctions and its Correlation with Photoactivity

Shuyang Wu, ^a Jinn-Kye Lee, ^a Pei Chong Lim, ^a Rong Xu, ^b Zhengyang Zhang ^{a,*}

^a Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, Singapore 637371.

^b School of Chemical and Biomedical Engineering, Nanyang Technological University, 62 Nanyang Drive, Singapore 637459.

Corresponding Author E-mail: zhang.zy@ntu.edu.sg

Fig. S1 XRD patterns of CdS, $g-C_3N_4$, CS/CN-II and CS/CN-Z.

 $C_3N_4.$

Fig. S3 XPS survey spectra of (a) CdS, (b) $g-C_3N_4$, (c) CS/CN-II and (d) CS/CN-Z.

Fig. S4 XPS spectra of (a) C 1s, (b) N 1s, (c) Cd 3d and (d) S 2p for CdS, g-C₃N₄ and CS/CN-II.

Fig. S5 UV-vis DRS spectra of CdS, g-C₃N₄, CS/CN-II, CS/CN-Z and physically mixed CdS/C₃N₄.

Fig. S6 Tauc plots of as-prepared samples for bandgap analysis.

Fig. S7 UPS spectra of (a) CdS, (b) $g-C_3N_4$, (c) CS/CN-II and (d) CS/CN-Z.

Fig. S8 Photocatalytic H₂ generation for 6 h over CS/CN-II using different sacrificial reagents (50 mg CS/CN-II, 1 wt% Pt, 300 W Xe lamp, > 400 nm).

Fig. S9 Charge distribution on CS/CN-II and CS/CN-Z. HRTEM images of CS/CN-II with (a) 1 wt% Pt and (b) 3 wt% PbO₂ loaded, and CS/CN-Z with (c) 1 wt% Pt and (d) 3 wt% PbO₂ loaded. Insets: HRTEM images of the marked positions in the respective images.

Fig. S10 Percentages of Pt and Pb species after photo-deposition. XPS spectra of Pt 4f in 1 wt% Pt loaded (a) CS/CN-II and (b) CS/CN-Z. XPS spectra of Pb 4f in 3 wt% PbO₂ loaded (a) CS/CN-II and (b) CS/CN-Z.

Fig. S11 Localize the center position of single fluorescent molecules with nanometer resolution. (a) Typical fluorescence image of a single resorufin molecule on CdS nanorods under laser excitation. (b) 2D Gaussian fitting of the fluorescence intensity profile with nanometer precision of \pm 16 nm.

Fig. S11a is a typical fluorescence image of a single resorufin molecule on CdS nanorods. The fluorescence intensity spreads over a few pixels as a point spread function. Generally, the localization precision can be determined using the method reported in the previous work.¹ As shown in **Fig. S11b**, the center position can be determined by fitting the intensity signals with 2D elliptical Gaussian functions (**Eq. S1**):

$$I(x,y) = A + B * exp[x](-(\frac{(x-x_0)^2}{2S_x^2} + \frac{(y-y_0)^2}{2S_y^2}))$$
(S1)

where $({}^{x_0}, {}^{y_0})$ is the center position, A is the background level, B is the peak intensity at $({}^{x_0}, {}^{y_0})$, S_x and S_y are the standard deviations of the Gaussian distribution along the x- and y-axes, respectively. The localization precision $(\sigma_j, {}_{j=x, y})$ can be calculated based on the pixel size of the camera, the photons collected and background noise level using **Eq. S2**:

$$\sigma_j = \sqrt{\left(\frac{S_j^2}{N} + \frac{a^2/12}{N} + \frac{8\pi S_j^4 b^2}{a^2 N^2}\right)}$$
(S2)

where *N* is the photons collected, *a* is the pixel size, and *b* is the background noise in photons. In the example shown in **Fig. S11**, the parameters are determined to be $S_x = 133$ nm, $S_y = 131$ nm, a = 160 nm, N = 612 and b = 16. Thus, $\sigma_x = 16$ nm and $\sigma_y = 15$ nm are obtained. The average localization precision is calculated to be $\sigma_{xy} = 16$ nm using **Eq. S3**:

$$\sigma_{xy} = (\sigma_x + \sigma_y)/2 \tag{S3}$$

Fig. S12 (a, d) Conventional brightfield images, (b, e) SRM images and (c, f) density maps (bin size: 25 nm \times 25 nm) of pure CdS with resazurin. Scale bar: 1 μ m.

Fig. S13 Conventional brightfield images of pure CdS with amplex red (a) before irridiation and (b) after irradiation. Scale bar: 1 μm.

Fig. S14 (a, d) Conventional brightfield images, (b, e) SRM images and (c, f) density maps (bin size: 25 nm \times 25 nm) of pure g-C₃N₄ with resazurin. Scale bar: 1 μ m.

Fig. S15 (a, d) Conventional brightfield images, (b, e) SRM images and (c, f) density maps (bin size: 25 nm \times 25 nm) of pure g-C₃N₄ with amplex red (The dashed lines are the outlines of g-C₃N₄ in the brightfield images). Scale bar: 1 μ m.

Fig. S16 Conventional brightfield images of CS/CN-Z with amplex red (a) before irridiation and (b) after irradiation. Scale bar: $1 \mu m$.

Fig. S17 HRTEM images of (a) CS/CN-II and (b) CS/CN-Z.

Reference	Photocatalysts	Catalyst weight	Light source	Cocatalyst	Scavenger	H ₂ production rate (μ mol h ⁻¹ g ⁻¹), (μ mol h ⁻¹)
This work	CS/CN-II	50 mg	300 W Xe, > 400 nm	1 wt% Pt	20 vol% lactic acid	2410 (120.5)
2	S-doped g- C ₃ N ₄ /Au/CdS	100 mg	> 400 mm 300 W Xe,	5 wt% Au	20 vol% lactic acid	1060 (106)
			> 420 nm			
3	CdS/g-C ₃ N ₄	50 mg	300 W Xe,	5 wt% Pd	0.5 M Na ₂ S and 0.5 M Na ₂ SO ₃	293 (14.65)
			>420 nm			
4	$CdS/g-C_3N_4$	10 mg	300 W Xe, AM 1.5G	3 wt% Pt	30 vol% TEOA	2240 (22.4)
5	CdS/g-C ₃ N ₄	100 mg	300 W Xe,	3 wt% Pt	10 vol% TEOA	716 (71.6)
			>420 nm			
6	CdS/g-C ₃ N ₄	50 mg	300 W Xe,	3 wt% Pt	20 vol% TEA	2340 (117)
			> 400 nm			
7	CdS/g-C ₃ N ₄	100 mg	300 W Xe,	2 wt% Pt	$\begin{array}{cccc} 0.35 & M & Na_2S \\ and & 1 & M \\ Na_2SO_3 \end{array}$	2590 (259)
			>420 nm			
8	$Cd_{0.8}Zn_{0.2}S/Au/g-C_3N_4$	50 mg	300 W Xe,	2 wt% Au	0.1 M glucose	123 (6.15)
			>400 nm			
9	CdS/g-C ₃ N ₄	50 mg	300 W Xe,	3 wt% Ag	10 vol% lactic acid	1376 (68.8)
			> 420 nm			
10	Cyano groups- C ₃ N ₄ / CdS	30 mg	300 W Xe,	1 wt% Pt	14 vol% lactic acid	1809 (54.3)
			> 420 nm			

Table S1. Summary of typical CdS/g-C $_3N_4$ composites for photocatalytic H $_2$ generation.

Table S2. Pt loading based on ICP measurement and percentages of Pt and Pb species observed from XPS spectra on CS/CN-II and CS/CN-Z after photoreactions.

	1% Pt ^{a)}			3% PbO ₂	
	Pt loading ^{b)} (Pt ^{0 c)}) (%)	Pt ⁰ (%)	Pt ²⁺ (%)	Pb ⁴⁺ (%)	Pb ²⁺ (%)
CS/CN-II	0.79 (0.69)	87.4	12.6	93.1	6.9
CS/CN-Z	0.71 (0.56)	79.5	20.5	89.0	11.0

^{a)} Theoretical loading based on the amount of Pt precursor is 1 wt%; ^{b)} by IPC measurement; ^{c)} total Pt% multiply by Pt⁰% from XPS results.

Reference

1. T.-X. Huang, B. Dong, S. L. Filbrun, A. A. Okmi, X. Cheng, M. Yang, N. Mansour, S. Lei and N. Fang, *Sci. Adv.*, 2021, 7, eabj4452.

2. W. Li, C. Feng, S. Dai, J. Yue, F. Hua and H. Hou, *Appl. Catal. B: Environ.*, 2015, **168**, 465-471.

3. N. Güy, Appl. Surf. Sci., 2020, 522, 146442.

4. H. Pang, Y. Jiang, W. Xiao, Y. Ding, C. Lu, Z. Liu, P. Zhang, H. Luo and W. Qin, J. *Alloys Compd.*, 2020, **839**, 155684.

5. B. Chong, L. Chen, D. Han, L. Wang, L. Feng, Q. Li, C. Li and W. Wang, *Chinese J. Catal.*, 2019, **40**, 959-968.

6. K. Wang, X. Wang, H. Pan, Y. Liu, S. Xu and S. Cao, *Int. J. Hydrog. Energy*, 2018, **43**, 91-99.

7. Z. L. Fang, H. F. Rong, L. Y. Zhou and P. Qi, J. Mater. Sci., 2015, 50, 3057-3064.

8. H. Zhao, X. Ding, B. Zhang, Y. Li and C. Wang, Sci. Bull., 2017, 62, 602-609.

L. Qian, Y. Hou, Z. Yu, M. Li, F. Li, L. Sun, W. Luo and G. Pan, *Mol. Catal.*, 2018, 458, 43-51.

Z. Wang, Z. Wang, X. Zhu, C. Ai, Y. Zeng, W. Shi, X. Zhang, H. Zhang, H. Si and J.
 Li, *Small*, 2021, 2102699.