Supporting Information

Strong, flexible, and highly conductive cellulose nanofibril/PEDOT:PSS/MXene nanocomposite films for efficient electromagnetic interference shielding

Kun Liu,[†]^a Haishun Du,^{†b*} Wei Liu,^a Meng Zhang,^a Yaxuan Wang,^a Huayu Liu,^a Xinyu Zhang^b, Ting Xu^{*a}, and Chuanling Si^{*a}

^a Tianjin Key Laboratory of Pulp and Paper, Tianjin University of Science and Technology, Tianjin 300457, China Email: sichli@tust.edu.cn; xuting@tust.edu.cn

^b Department of Chemical Engineering, Auburn University, Auburn AL-36849, USA Email: hzd0024@auburn.edu

⁺ These	authors	contributed	equally	to	this	work.
111656	aachoro	contributed	equany			

Scheme S1. Schematic illustration of preparation of CNF/PEDOT:PSS.

Figure S1. (a) Survey XPS spectrum of the $Ti_3C_2T_x$, (b) Ti 2p spectra, (c) C 1s spectra and (d) O 1s spectra of sample.

Figure S2. Tyndall effect of $Ti_3C_2T_x$ nanosheet aqueous dispersion.

Figure S3. SEM images of $Ti_3AIC_2 MAX$ (a), m- $Ti_3C_2T_x$ (b) and d- $Ti_3C_2T_x$ (c).

Figure S4. TEM images of CNF (a), PEDOT:PSS (b). HAADF-STEM image of CNF/PEDOT:PSS (c) and the corresponding elemental mappings of C and S (d, f).

Figure S5. SEM surface images of CNF/PEDOT:PSS film (a), CNF/PEDOT:PSS/MXene-20 (b), CNF/PEDOT:PSS/MXene-50 (c) and CNF/PEDOT:PSS/MXene-80 (d).

Figure S6. XRD patterns of CNF, PEDOT:PSS, MXene and their nanocomposite films.

Figure S7. (a) XRD patterns and (b-f) Raman spectroscopy of CNF/PEDOT:PSS/MXene nanocomposite films.

Table S1. The comparison of EMI shielding performances and mechanical properties betwee	n
CNF /PEDOT: PSS-MXene composite film and other MXene based film materials.	

Materials	Thickness (μm)	SE (dB)	Conductivity (S cm ⁻¹)	Tensile strength (MPa)	Frequency (GHz)	Ref.
$Ti_3C_2T_x$ /chitosan	37	34.7	14.02	-	8.2–12.4	1
Ti ₃ C ₂ T _x /PVA	27	44.4	7.16	-	8.2–12.4	2
Ti ₃ C ₂ T _x /PEDOT:PSS	11	42.1	340.50	13.71	8.2–12.4	3
$Ti_3C_2T_x/AgNW/nanocellulose$	17	42.74	300.00	63.8	8.2-12.4	4
Ti ₃ C ₂ T _x /PANI	40	36	24.40	19.9	8.2-12.4	5
Ti ₃ C ₂ T _x /PEDOT:PSS	6.6	40.5	675.20	38.5	8.2–12.4	6
Ti ₃ C ₂ T _x /Al	39	80	2656.00	83.2	8.2–12.4	7
Ti ₃ C ₂ T _x /CNF	167	25	7.394	135.4	8.2–12.4	8
Ti ₃ C ₂ T _x /TOCNF	38	39.6	28.37	212	8.2–12.4	9
Ti ₃ C ₂ T _x /CNF/AgNW	46	50.7	5.882	32.1	8.2–12.4	10
$Ti_3C_2T_x$ /aramid nanofibers	12	34.7	-	46.5	8.2–12.4	11
Ti ₃ C ₂ T _x /CNT/CNF	38	38.4	25.07	97.9	8.2–12.4	12
$Ti_3C_2T_x$ /polyacrylonitrile/TiO ₂	45	22	02.68	02.55	8 2 12 4	13
/polydopamine	45	32	92.08	93.55	8.2-12.4	
Ti ₃ C ₂ T _x /AgNW/PVDF	300	25.87	1.08	-	8.2–12.4	14
CNT/cellulose	150	35	20	26.9	8.2–12.4	15
CNT/CNF	150	46.4	31.87	48	8.2–12.4	16
Ti ₃ C ₂ T _x /CNF	192	29.3	-	-	8.2-12.4	17

Ti ₃ C ₂ T _x /CNF	40	30	140.85	35	8.2–12.4	18
$CNF/PEDOT:PSS/Ti_3C_2T_x$	44	76.99	2640.55	25.5	8.2–12.4	This work
$CNF/PEDOT:PSS/Ti_3C_2T_x$	58	76.99	1903.02	59.99	8.2–12.4	This work
$CNF/PEDOT:PSS/Ti_3C_2T_x$	63	39.78	21.9	73.86	8.2–12.4	This work

References

- 1 F. Liu, Y. Li, S. Hao, Y. Cheng, Y. Zhan, C. Zhang, Y. Meng, Q. Xie and H. Xia, *Carbohydr. Polym.*, 2020, **243**, 116467.
- 2 X. Jin, J. Wang, L. Dai, X. Liu, L. Li, Y. Yang, Y. Cao, W. Wang, H. Wu and S. Guo, *Chem. Eng. J.*, 2020, **380**, 122475.
- 3 R. Liu, M. Miao, Y. Li, J. Zhang, S. Cao and X. Feng, *ACS Appl. Mater. Interfaces*, 2018, **10**, 44787–44795.
- 4 M. Miao, R. Liu, S. Thaiboonrod, L. Shi, S. Cao, J. Zhang, J. Fang and X. Feng, *J. Mater. Chem. C*, 2020, **8**, 3120–3126.
- 5 Y. Zhang, L. Wang, J. Zhang, P. Song, Z. Xiao, C. Liang, H. Qiu, J. Kong and J. Gu, *Compos. Sci. Technol.*, 2019, **183**, 107833.
- 6 Y.-J. Wan, X.-M. Li, P.-L. Zhu, R. Sun, C.-P. Wong and W.-H. Liao, *Compos. Part Appl. Sci. Manuf.*, 2020, **130**, 105764.
- 7 Z. Liu, Y. Zhang, H.-B. Zhang, Y. Dai, J. Liu, X. Li and Z.-Z. Yu, *J. Mater. Chem. C*, 2020, **8**, 1673–1678.
- 8 W. Cao, F. Chen, Y. Zhu, Y. Zhang, Y. Jiang, M. Ma and F. Chen, *ACS Nano*, 2018, **12**, 4583–4593.
- 9 Z. Zhan, Q. Song, Z. Zhou and C. Lu, J. Mater. Chem. C, 2019, 7, 9820–9829.
- 10 W. Xin, G. Xi, W. Cao, C. Ma, T. Liu, M. Ma and J. Bian, RSC Adv., 2019, 9, 29636–29644.
- 11H. Wei, M. Wang, W. Zheng, Z. Jiang and Y. Huang, Ceram. Int., 2020, 46, 6199–6204.
- 12 W. Cao, C. Ma, S. Tan, M. Ma, P. Wan and F. Chen, Nano-Micro Lett., 2019, 11, 1–17.
- 13 M. Aakyiir, M.-A. S. Kingu, S. Araby, Q. Meng, J. Shao, Y. Amer and J. Ma, *J. Appl. Polym. Sci.*, 2021, **138**, 50509.
- 14 H. Cheng, Y. Pan, Q. Chen, R. Che, G. Zheng, C. Liu, C. Shen and X. Liu, *Adv. Compos. Hybrid Mater.*, 2021, **4**, 505–513.
- 15L.-Q. Zhang, B. Yang, J. Teng, J. Lei, D.-X. Yan, G.-J. Zhong and Z.-M. Li, *J. Mater. Chem. C*, 2017, **5**, 3130–3138.
- 16 H. Zhang, X. Sun, Z. Heng, Y. Chen, H. Zou and M. Liang, *Ind. Eng. Chem. Res.*, 2018, **57**, 17152–17160.
- 17Y. Zhan, Y. Meng and Q. Xie, J. Appl. Polym. Sci., 2021, 138, 50597.
- 18Z. Cui, C. Gao, Z. Fan, J. Wang, Z. Cheng, Z. Xie, Y. Liu and Y. Wang, *J. Electron. Mater.*, 2021, **50**, 2101–2110.