Supplementary Information for "Effect of Chemical Substitution and External Strain on Phase Stability and Ferroelectricity in Two Dimensional M₂CT₂ MXenes"

Mo Li, ¹ Olamide Omisakin, ¹ Joshua Young¹ Department of Chemical and Materials Engineering, New Jersey Institute of Technology,

I. Optimized structures

Figure S2. Fully relaxed structures for Sc₂CF₂.

Figure S3. Fully relaxed structures for Sc₂CCl₂.

Figure S4. Fully relaxed structures for Y₂CF₂.

Figure S5. Fully relaxed structures for Y₂CCl₂.

Figure S6. Fully relaxed structures for La₂CO₂.

Figure S7. Fully relaxed structures for Ti_2CO_2 .

Figure S8. Fully relaxed structures for Zr₂CO₂.

Figure S9. Fully relaxed structures for Hf₂CO₂.

II. PBE Density of States

Figure S10. Density of states for Sc_2CO_2 in the four studied phases.

Figure S11. Density of states for Sc_2CF_2 in the four studied phases.

Figure S12. Density of states for Sc_2CCl_2 in the four studied phases.

Figure S13. Density of states for Y₂CO₂ in the four studied phases.

Figure S14. Density of states for Y₂CF₂ in the four studied phases.

Figure S15. Density of states for Y₂CCl₂ in the four studied phases.

Figure S16. Density of states for Ti₂CO₂ in the four studied phases.

Figure S17. Density of states for Hf₂CO₂ in the four studied phases.

III. Phonon Stability

Figure S18. Phonon frequencies for Sc₂CO₂ in the mixed phase.

Figure S19. Phonon frequencies for Sc_2CF_2 in the mixed phase.

Figure S20. Phonon frequencies for Sc_2CS_2 in the mixed phase.

Figure S21. Phonon frequencies for Y₂CO₂ in the mixed phase.

Figure S22. Phonon frequencies for Y_2CF_2 in the mixed phase.

Figure S23. Phonon frequencies for Y_2CS_2 in the mixed phase.

Figure S24. Phonon frequencies for La₂CO₂ in the mixed phase.

Figure S25. Phonon frequencies for Ti_2CO_2 in the mixed phase.

Figure S26. Phonon frequencies for Hf₂CO₂ in the mixed phase.

Figure S27. Phonon frequencies for Sc₂CCl₂ in the mixed phase.

Figure S28. Phonon frequencies for Y₂CCl₂ in the mixed phase.

Table S1.	Born	effectiv	e charges	for mix	ked phase	compound	s not re	ported in	the main	text.
			0					1		

	Born effective charges						
	Element	Z11	Z22	Z33			
Sc2CF2	С	-5.33	-5.31	-0.44			
	F1	-1.05	-1.11	-0.52			
	F2	-1.77	-1.76	-0.50			
	Sc1	4.36	4.36	0.73			
	Sc2	3.78	3.82	0.72			
0000010	G	5 5 1	5 5 1	0.46			
SC2CCI2	С	-5.51	-5.51	-0.46			
	C11	-1.08	-1.08	-0.29			
	C12	-1.57	-1.57	-0.27			
	Sc1	4.35	4.35	0.52			
	Sc2	3.82	3.82	0.50			
Y2CF2	С	-5.38	-5.38	-0.47			
	F1	-0.99	-0.99	-0.58			
	F2	-1.81	-1.81	-0.55			
	Y1	4.42	4.42	0.80			
	Y2	3.76	3.76	0.80			

Y2CCl2	С	-5.62	-5.62	-0.52
	Cl1	-1.06	-1.06	-0.37
	C12	-1.60	-1.60	-0.35
	Y1	4.42	4.42	0.63
	Y2	3.86	3.86	0.62
Ti2CO2	С	-4.36	-4.36	-0.21
	01	-2.32	-2.33	-0.38
	O2	-4.26	-4.25	-0.38
	Ti1	6.95	6.95	0.53
	Ti2	3.99	3.99	0.43
Hf2CO2	С	-4.44	-4.44	-0.37
	01	-2.21	-2.21	-0.51
	O2	-3.53	-3.53	-0.52
	Hf1	5.90	5.90	0.75
	Hf2	4.28	4.28	0.66

Figure S29. Formation energy of $Sr_{2(1-x)}Y_{2x}CO_2$ alloys as a function of concentration.

Figure S30. Relaxed structures of all $Sr_{2(1-x)}Y_{2x}CO_2$ alloy structures tested in the mixed phase. The lowest energy structure is circled in red.

Figure S31. Relaxed structures of all $Sr_{2(1-x)}Y_{2x}CO_2$ alloy structures tested in the asymmetric phase. The lowest energy structure is circled in red.

Figure S32. Polarization quantum for Sc₂CO₂.

Figure S33. Phonon band structure of the Y_2CO_2 symmetric phase.