Supplementary Information

Quasi-3D Sb₂S₃/Reduced Graphene Oxide/MXene (Ti₃C₂T_x) Hybrid for High-rate and Durable Sodium-Ion Batteries

Pengxin Li, Rui Zang, Yuhan Wu, Shuaishuai Liu, Siyu Wang, Puyu Liu, Peng Li*

College of Material Science and Engineering, Nanjing University of Aeronautics and

Astronautics, Nanjing 211106, China.

*Corresponding author. E-mail: LPeng@nuaa.edu.cn;

Fig. S1 (a) SEM and (b) TEM images of the $Ti_3C_2T_x$ MXene.

Fig. S2 SEM image of the Sb_2S_3 nanoparticles.

Fig. S3 SEM image of the $Sb_2S_3/RGO/MX$ ene composite.

Fig. S4 HRTEM image of the $Sb_2S_3/RGO/MX$ ene composite.

Fig. S5 N_2 adsorption/desorption isotherms and the corresponding pore size distribution curve (inset) of the (a) Sb_2S_3/RGO and (b) Sb_2S_3/MX ene composite.

Fig. S6 the high-resolution C 1s XPS spectra of Sb₂S₃/RGO composite

Fig. S7 Cycling performances of the 3D RGO/MXene electrode

Fig. S8 (a) TEM image of Sb₂S₃/RGO/MXene after 50 cycles at 0.2 $A \cdot g^{-1}$. (b) TEM elemental-mapping images for C, S, Sb, Ti and Na.

Table S1 Electrochemical performance comparison between the $Sb_2S_3/RGO/MX$ enecomposite and previously reported Sb_2S_3 -based composites.

Materials	Cycling stability (mAh g ⁻¹)	Rate capability (mAh g ⁻¹)	
Sb_2S_3/CS^1	321 after 200 cycles at 0.2 A $g^{\text{-1}}$	221 at 5 A g ⁻¹	
Sb ₂ S ₃ @MWCNTs ²	412.3 after 50 cycles at 0.05 A $\rm g^{-1}$	399.1 at 1 A g ⁻¹	
Sb_2S_3 nanorods@C ³	570 after 100 cycles at 0.1 A $\rm g^{-1}$	337 at 2 A g ⁻¹	
Sb ₂ S ₃ hollow microspheres ⁴	$_3$ hollow microspheres ⁴ 384 after 50 cycles at 0.2 A g ⁻¹		
Sb ₂ S ₃ /PPy Microspheres ⁵	Py Microspheres ⁵ 427 after 50 cycles at 0.1 A g^{-1}		
amorphous Sb_2S_3 anoparticle ⁶	586 after 100 cycles at 0.05 A g^{-1}	534 at 3 A g ⁻¹	
$Sn@Sb_2S_3$ -rGO ⁷	541 after 70 cycles at 0.5 A $\rm g^{\text{-}1}$	360 at 5 A g ⁻¹	
Sb_2S_3/C^8	538 after 100 cycles at 0.2 A g^{-1}	520 at 2 A g ⁻¹	
$MWNTs@Sb_2S_3@PPy^9 500 ext{ after 85 cycles at } 0.1 ext{ A g}^{-1}$		376 at 2 A g ⁻¹	
This work	633.3 after 100 cycles at 0.2 A $g^{\text{-}1}$	510 1 at 4 A and	
I IIIS WOFK	442.6 after 500 cycles at 2 A g^{-1}	510.1 at 4 A g ·	

Fig. S9 (a, d) CV curves of the Sb₂S₃/RGO and Sb₂S₃/MXene electrode at different scan rates. (b, e) Corresponding log(i) versus log(v) plots for different redox peaks, respectively. (c, f) Capacitive contributions of the Sb₂S₃/RGO and Sb₂S₃/MXene

electrode at various scan rates.

Fig. S10 Linear fits (relationship between Z' and $\omega^{-1/2}$) in low-frequency region of the Sb₂S₃/RGO, Sb₂S₃/MXene and Sb₂S₃/RGO/MXene.

Fig. 11 The GITT curves of the Sb₂S₃/RGO and Sb₂S₃/MXene electrodes.

The value of D_{GITT} can be calculated by applying the following equation:

$$D_{GITT} = \frac{4}{\pi\tau} \left(\frac{n \, Vm}{A}\right)^2 \left(\frac{\Delta E_s}{\Delta E_\tau}\right)^2 \left(\tau \ll \frac{L^2}{D}\right) \tag{S1}$$

In equation S1, τ represents the pulse time; *n* is the amount of substance of the material, *Vm* is the molar volume of the material; *A* is the area of the electrode; *L* is the thickness of the electrode; ΔE_s is the voltage change caused by the pulse; ΔE_{τ} represents the voltage change during the pulse.

Fig. S12 Optimized structures for the adsorption of Na⁺ on (a) Sb₂S₃, (b) Sb₂S₃/RGO,
(c) Sb₂S₃/MXene, (d) Sb₂S₃-RGO-MXene and (e) Sb₂S₃-MXene-RGO at side (top) and top (bottom) views. (f) Differential charge density of the Sb₂S₃-RGO-MXene at side (top) and top (bottom) views.

Table S2 The adsorption energy of Na⁺ on the Sb₂S₃, Sb₂S₃/RGO, Sb₂S₃/MXene and Sb₂S₃/RGO/MXene.

	Sb_2S_3	Sb ₂ S ₃ /RGO	Sb ₂ S ₃ /MXene	Sb ₂ S ₃ /RGO/MXene	
				Sb ₂ S ₃ -RGO-MXene	Sb ₂ S ₃ -MXene-RGO
E _{ads}	1.38 eV	1.36 eV	1.40 eV	1.35 eV	1.49 eV

References

- J. Xie, J. Xia, Y. Yuan, L. Liu, Y. Zhang, S. Nie, H. Yan and X. Wang, J. Power Sources, 2019, 435, 226762.
- J. Li, Y. Dong, X. Zhang, S. Hu, D. Li, P. Likun, *Electrochimica Acta*, 2017, 228 ,436-446.
- 3. S. Yao, J. Cui, Z. Lu, Z. Xu, L.Qin, J. Huang, Z. Sadighi, F. Ciucci and J. K. Kim, *Adv. Energy Mater.*, 2017, 7, 1602149.
- Y. Zhang, M. Li, Y. Ouyang, S. Nie and X. Wang, *Nano-Micro Letters*, 2018, 10, 12.
- 5. T. Zheng, G. Li, L. Zhao and Y. Shen, Eur. J. Inorg. Chem., 2018, 10, 1224-1228.
- 6. S. Hwang, J. Kim and Y. Kim, J. Mater. Chem. A, 2016, 4, 17946-17951.
- 7. B. Qu, P. Deng, J. Yang, W. He and D. Tang, ChemElectroChem, 2018, 5, 1-7.
- 8. J. Choi, C. Ha, H. Choi, He. Shin and S. Lee, Met. Mater. Int., 2017, 23, 1241-1249.
- S. Wang, S. Yuan, Y. Yin, Y. Zhu, X. Zhang and J. Yan, Part. Part. Syst. Char., 2016, 33, 493-499.