Electronic Supplementary Material (ESI) for Nanoscale. This journal is © The Royal Society of Chemistry 2022

¹ Supporting Information

2

3 Expanded Sandwich-like Heterostructure with Thin FeP

4 Nanosheets@Graphene via Charge-Driven Self-Assembly as High-

5 Performance Anodes for Sodium Ion Battery

6 Seungman Park^{a, 1}, Dongwon Kim^{a, 1}, Myeongseok Jang^a, Taejin Hwang^a, Seon Jae Hwang

7 ^{*a*}, and Yuanzhe Piao ^{*a*, *b*, *}

8

9 ^a Graduate School of Convergence Science and Technology, Seoul National University, 145

10 Gwanggyo-ro, Yeongtong-gu, Suwon-Si, Gyeonggi-do, 16229, Republic of Korea

¹¹ ^b Advanced Institutes of Convergence Technology, 145 Gwanggyo-ro, Yeongtong-gu, Suwon-

12 si, Gyeonggi-do, 16229, Republic of Korea

13 E-mail: parkat9@snu.ac.kr (Y. Piao)

14

¹⁵ ¹These authors contributed equally to this work.

6 Fig. S2 TGA measurement of polystyrene beads (PSBs) with temperature range from 25 to 700

7 °C under Ar flow.

2 Fig. S3 Atomic force microscope (AFM) analysis of Fe-Tris NSs (a) and the corresponding
3 plot of distance versus height (b).

Fig. S4 Pore size distribution curves of expanded FeP NSs@rGO and FeP NSs@rGO
8 samples.

- 3 Fig. S5 HR-TEM image of expanded FeP NSs@rGO.

Fig. S6 EDS mapping images of FeP NSs@rGO.

3 Fig. S7 XPS survey spectra of expanded FeP NSs@rGO (a), and FeP NSs@rGO (b); C 1s
4 spectra for expanded FeP NSs@rGO (c), and FeP NSs@rGO (d).

2

2 Fig. S8 CV curves of FeP NSs@rGO electrode of the first 5 cycles at a scan rate of 0.1 mV s^-

3 ¹ in the potential range of $0.001 \sim 3 \text{ V}$ vs. Na/Na⁺.

4

1

6 Fig. S9 Galvanostatic discharge-charge profiles of FeP NSs@rGO electrode of the first 100
7 cycles at a current density of 0.1 A g⁻¹.

Fig. S10 Nyquist plot of expanded FeP NSs@rGO and FeP NSs@rGO electrodes (a), and
corresponding equivalent circuits for expanded FeP NSs@rGO and FeP NSs@rGO electrodes
(b).

SampleCarbon content (wt %)	
FeP NSs@rGO	5.03
expanded FeP NSs@rGO	5.37

6

7 Table S1 Elemental analysis of FeP NSs@rGO and expanded FeP NSs@rGO.

⁸

Samples	$\mathbf{R}_{\Omega}/ \Omega \cdot \mathbf{cm}^{-2}$	R_{SEI}/Ω ·cm ⁻²	R_{ct}/Ω ·cm ⁻²
expanded FeP NSs@rGO	7.47 ± 0.19	10.02 ± 2.12	72.12 ± 1.34
FeP NSs@rGO	8.87 ± 0.23	12.98 ± 5.32	78.28 ± 5.24

10 Table S2 The fitting values of the resistance components in the simplified equivalent circuit.

3 100 cycles at a current density of 1 A g⁻¹.

7

8 Fig. S12 The GITT curves (a) and the Na⁺ diffusion coefficient (b) of expanded FeP
9 NSs@rGO.

Fig. S13 Ex-situ XRD patterns of expanded FeP NSs@rGO anode with the corresponding
galvanostatic discharge-charge profiles at a current density of 0.1 A g⁻¹.

Fig. S14 Galvanostatic discharge-charge profiles of Na₃V₂(PO₄)₃ electrode at a current density
 of 0.1 A g⁻¹.

4 Fig. S15 XPS survey spectra of the air stability. P 2p spectra for expanded FeP NSs@rGO after
5 exposure to the ambient atmosphere for 90 days (a), fresh FeP NSs (b), and FeP NSs after
6 90days (c).