Electronic Supplementary Information

Revealing truncated conical geometry of nanochannels in anodic aluminium oxide membranes

Junxi Zhang, *a, Huaping Zhao, ${ }^{\text {b }}$ Ming Gong, ${ }^{\text {c }}$ Lide Zhang, ${ }^{\text {d }}$ Zhijun Yan, ${ }^{e}$ Kang Xie, ${ }^{\text {f }}$ Guangtao Fei, ${ }^{\text {d }}$ Xiaoguang Zhu, ${ }^{\text {d }}$ Mingguang Kong, ${ }^{\text {d }}$ Shuyuan Zhang, ${ }^{\text {g }}$ Lin Zhang ${ }^{\text {h }}$ and Yong Lei,*b

${ }^{\text {a }}$ School of Instrument Science and Opto-electronics Engineering, Anhui Key Laboratory of Advanced Functional Materials and Devices, and Anhui Province Key Laboratory of Measuring Theory and Precision Instrument, Hefei University of Technology, Hefei 230009, China.
${ }^{\text {b }}$ Institute of Physics \& IMN MacroNanos, Ilmenau University of Technology, Ilmenau 98693, Germany.
${ }^{c}$ Laboratory of Engineering and Material Science, University of Science and Technology of China, Hefei 230027, China.
${ }^{d}$ Key Laboratory of Materials Physics, Institute of Solid State Physics, Chinese Academy of Sciences, Hefei 230031, China.
${ }^{\mathrm{e}}$ School of Optical and Electronic Information, Huazhong University of Science and Technology, Wuhan 430074, China.
${ }^{\mathrm{f}}$ School of Opto-Electronic Engineering, Zaozhuang University, Zaozhuang 277160, Shandong, China.
${ }^{\mathrm{g}}$ Hefei National Laboratory for Physical Sciences at Microscale, University of Science and Technology of China, Hefei 230026, China.
${ }^{\text {h }}$ Aston Institute of Photonic Technologies, School of Engineering \& Applied Science, Aston University, Birmingham B4 7ET, UK.
*Email: junxi.zhang@hfut.edu.cn; yong.lei@tu-ilmenau.de

1. Measurements of optical reflection spectra of the cross sections of AAO membranes.

Fig. S1. Schematic illustration of micro-spectroscopy measurements of the cross sections of AAO membrane by a confocal microscope (Olympus, $100 \times$) with an imaging spectrometer (iHR550).

2. Measurements of sizes and their distributions of the top and the bottom nanochannels of AAO membranes by a Gatan DigitalMicrograph (DM) software

Fig. S2. Size distribution histograms of the top and the bottom nanochannels in the through-channel AAO membranes prepared at $13{ }^{\circ} \mathrm{C}$ for 640 min . (a1), (b1), (c1) and (d1) show the size distributions of the top nanochannels in the AAO membranes after the etching for $0,10,35$, and 60 min , respectively. (a2), (b2), (c2) and (d2) represent those of the bottom nanochannels in the same AAO membranes corresponding to (a1), (b1), (c1) and (d1), respectively.
(a)

(b)

	FilledArea	CircDiamet
$R 0$	2280.0	54.5703
$R 1$	2202.0	52.8572
$R 2$	2134.0	52.2179
$R 3$	2312.0	54.6199
$R 4$	2327.0	54.3323
$R 5$	2203.0	52.7833
$R 6$	2254.0	53.7435
$R 7$	2377.0	56.3166
$R 8$	2227.0	53.2053
$R 9$	2422.0	55.6042
$R 10$	2239.0	54.257
$R 11$	2172.0	52.5
$R 12$	2413.0	55.8402
$R 13$	2185.0	52.8192
$R 14$	2325.0	54.6116
$R 15$	2379.0	55.3362
$R 16$	2267.0	53.5268
$R 17$	2678.0	62.209
$R 18$	2211.0	53.1303
$R 19$	2145.0	52.0844
$R 20$	2380.0	55.1158
$R 21$	2090.0	51.7755
$R 22$	2139.0	52.0692
$R 23$	2057.0	51.0926
$R 24$	2479.0	56.1755
$R 25$	2229.0	53.4065
$R 26$	2560.0	59.2971
$R 27$	2233.0	53.088
$R 28$	2332.0	54.1737
$R 29$	2207.0	52.876
$R 30$	2282.0	54.0926
$R 31$	2380.0	54.8145
$R 32$	2470.0	56.2757
$R 33$	2101.0	51.4682
$R 34$	2238.0	53.2642
$R 35$	2310.0	54.26
$R 36$	2284.0	53.7183
$R 37$	2238.0	53.3121

	FilledArea	CircDiamete
R38	2356.0	55.0827
R39	2216.0	52.8828
$R 40$	2397.0	54.9763
$R 41$	2118.0	51.6865
$R 42$	2157.0	52.5234
$R 43$	2336.0	54.3882
$R 44$	2284.0	54.0327
$R 45$	2237.0	53.159
$R 46$	2180.0	52.4772
$R 47$	2137.0	52.0755
$R 48$	2157.0	52.5649
$R 49$	2191.0	52.7649
$R 50$	2223.0	53.0789
$R 51$	2323.0	54.2185
$R 52$	2135.0	51.9912
$R 53$	2185.0	52.6043
$R 54$	2167.0	52.3258
$R 55$	2302.0	54.2594
$R 56$	2040.0	50.6056
$R 57$	2276.0	53.64
$R 58$	2184.0	52.6598
$R 59$	2053.0	50.9348
$R 60$	2189.0	52.5032
$R 61$	2347.0	54.5372
$R 62$	2236.0	53.1033
$R 63$	2279.0	53.6277
$R 64$	2064.0	50.9652
$R 65$	2160.0	52.1235
$R 66$	2125.0	51.7783
$R 67$	2179.0	52.5587
$R 68$	2492.0	56.3321
$R 69$	2210.0	52.7655
$R 70$	2320.0	54.9786
$R 71$	2237.0	53.3981
$R 72$	2238.0	53.314
$R 73$	2183.0	52.7069
$R 74$	2192.0	52.7517
$R 75$	2218.0	53.1606

	FilledArea	CircDiamete
R76	2219.0	53.1239
R77	2225.0	53.0537
R78	1841.0	48.8374
R79	2275.0	53.5428
R80	2179.0	52.4814
R81	2344.0	55.6951
R82	2249.0	53.3933
R83	2189.0	52.6894
R84	2132.0	52.5734
R85	2181.0	52.6339
R86	2172.0	52. 3992
R87	2081.0	51.2947
R88	2258.0	53.8119
R89	2084.0	51.2297
R90	1882.0	49.6917
R91	2400.0	56.842
$R 92$	2179.0	52.6142
R93	2167.0	52.3374
R94	1047.0	37.6003
R95	2022.0	52.3591
$R 96$	2200.0	52.8532
R97	1990.0	49.9813
R98	2104.0	52.5097
R99	2157.0	52.417
R100	2266.0	54.6898
R101	1994.0	50.6999
$R 102$	1091.0	37.665
$R 103$	1944.0	51.8077
R104	2281.0	54.6635
$R 105$	2111.0	51.8812
$R 106$	1650.0	46.2372
$R 107$	2308.0	55.9856
R108	2360.0	58.2672
R109	1612.0	45.4601
R110	2068.0	51.122
R111	2371.0	57.8847
R112	2144.0	52.9468
R113	1626.0	47.0765

Fig. S2-a1. (a) TEM image of the top surface of the AAO membrane without the chemical etching corresponding the analyzed nanochannels after the thresholding based on the DM software, the thresholding is the process of separating the top surfaces of the nanochannels from the rest of the image. (b) Measurements of the sizes (diameter, unit: nm) of the analyzed nanochannels on the top surface of the AAO membrane.
(a)

(b)

	FilledArea	CircDiamet ϵ
$R 0$	969.0	35.1442
$R 1$	1028.0	35.8529
$R 2$	973.0	35.2076
$R 3$	966.0	34.8069
$R 4$	969.0	35.357
$R 5$	1071.0	36.8437
$R 6$	999.0	35.5366
$R 7$	1104.0	37.6434
$R 8$	997.0	35.3292
$R 9$	901.0	34.0675
$R 10$	1019.0	36.3045
$R 11$	1059.0	36.9223
$R 12$	1073.0	37.5598
$R 13$	995.0	35.6727
$R 14$	1050.0	36.5989
$R 15$	1002.0	35.6701
$R 16$	973.0	36.189
$R 17$	1029.0	36.5219
$R 18$	1055.0	37.1527
$R 19$	1008.0	35.6667
$R 20$	996.0	35.6642
$R 21$	1100.0	37.44
$R 22$	1022.0	35.803
$R 23$	1087.0	37.8755
$R 24$	975.0	35.1048
$R 25$	1049.0	36.4966
$R 26$	899.0	34.466
$R 27$	1051.0	38.0627
$R 28$	1161.0	42.4691
$R 29$	1116.0	38.865
$R 30$	1008.0	35.6095
$R 31$	965.0	35.9241
$R 32$	1035.0	36.2293
$R 33$	1047.0	36.2545
$R 34$	990.0	35.2827
$R 35$	1268.0	40.1151
$R 36$	1016.0	35.9082
$R 37$	1064.0	36.7211
$R 38$	1013.0	35.8891
$R 39$	1092.0	38.0244
$R 40$	983.0	35.7382
$R 41$	1111.0	37.4741
$R 42$	1051.0	37.2357
$R 43$	1507.0	49.4749
$R 44$	1081.0	36.8168

	FilledArea	CircDiamet ϵ
$R 45$	1023.0	36.6071
$R 46$	1184.0	38.9227
$R 47$	987.0	35.1543
$R 48$	1073.0	37.9379
$R 49$	981.0	35.265
$R 50$	1039.0	36.7843
$R 51$	1051.0	36.5621
$R 52$	1034.0	36.4569
$R 53$	1056.0	37.1339
$R 54$	1143.0	40.7469
$R 55$	919.0	34.0752
$R 56$	1098.0	37.424
$R 57$	1022.0	36.338
$R 58$	1236.0	40.4201
$R 59$	1090.0	37.4675
$R 60$	1112.0	37.6477
$R 61$	986.0	35.2608
$R 62$	1068.0	36.9094
$R 63$	1054.0	36.4824
$R 64$	1061.0	36.7523
$R 65$	1019.0	35.9233
$R 66$	980.0	36.1629
$R 67$	1047.0	36.3408
$R 68$	1117.0	37.6377
$R 69$	1039.0	36.2255
$R 70$	1014.0	35.7761
$R 71$	987.0	35.1349
$R 72$	1142.0	37.9424
$R 73$	1017.0	35.7787
$R 74$	1069.0	36.7916
$R 75$	1010.0	35.9045
$R 76$	1141.0	38.0043
$R 77$	1073.0	36.8321
$R 78$	1101.0	37.328
$R 79$	1053.0	36.4441
$R 80$	1228.0	39.761
$R 81$	1116.0	37.4504
$R 82$	1038.0	36.2519
$R 83$	951.0	34.493
$R 84$	1038.0	36.098
$R 85$	1086.0	37.0931
$R 86$	1077.0	37.1516
$R 87$	1171.0	38.767
$R 88$	1072.0	37.7382
$R 89$	992.0	35.2596

	FilledArea	CircDiamett
R90	1237.0	39.7094
$R 91$	1109.0	37.2961
$R 92$	1102.0	37.1813
$R 93$	938.0	34.1619
$R 94$	1050.0	36.4048
$R 95$	1091.0	37.388
$R 96$	1119.0	38.0326
$R 97$	1052.0	36.3877
$R 98$	1024.0	36.1348
$R 99$	1037.0	36.15
$R 100$	1206.0	38.9986
$R 101$	1068.0	36.7029
$R 102$	1047.0	36.6739
$R 103$	976.0	34.9363
$R 104$	1112.0	37.4179
$R 105$	1037.0	36.1443
$R 106$	1054.0	36.5915
$R 107$	1059.0	36.9477
$R 108$	1038.0	36.4689
$R 109$	1057.0	36.4231
$R 110$	1037.0	36.1691
$R 111$	1038.0	36.0716
$R 112$	968.0	35.0199
$R 113$	1066.0	36.6012
$R 114$	976.0	35.1715
$R 115$	1223.0	39.36
$R 116$	1132.0	37.7858
$R 117$	1143.0	38.086
$R 118$	1260.0	42.0887
$R 119$	1197.0	39.1042
$R 120$	1113.0	37.9974
$R 121$	1085.0	37.2107
$R 122$	1101.0	40.0643
$R 123$	1104.0	37.3577
$R 124$	1007.0	35.6787
$R 125$	1138.0	38.2325
$R 126$	1075.0	36.9632
$R 127$	1057.0	36.5514
$R 128$	1292.0	41.1262
$R 129$	1358.0	43.9933
$R 130$	1302.0	42.7455
$R 131$	1004.0	35.6434
$R 132$	1152.0	39.9754
$R 133$	1083.0	37.1432

Fig. S2-a2. (a) TEM image of the bottom surface of the AAO membrane without the chemical etching corresponding the analyzed nanochannels after the thresholding. (b) Measurements of the sizes (diameter, unit: nm) of the analyzed nanochannels on the bottom surface of the AAO membrane.
(a)

(b)

	FilledArea	CircDiamet ϵ
$R 0$	4167.0	77.6757
$R 1$	3498.0	67.4905
$R 2$	3268.0	66.457
$R 3$	3630.0	71.5134
$R 4$	3028.0	62.229
$R 5$	3881.0	75.6831
$R 6$	3218.0	65.6902
$R 7$	3600.0	68.6301
$R 8$	3345.0	66.147
$R 9$	3381.0	66.1198
$R 10$	3911.0	73.4747
$R 11$	3087.0	63.1614
$R 12$	3445.0	67.6725
$R 13$	3071.0	62.6109
$R 14$	3193.0	63.9643
$R 15$	3749.0	71.588
$R 16$	3121.0	63.217
$R 17$	3365.0	66.195
$R 18$	3031.0	63.0992
$R 19$	3211.0	64.1397
$R 20$	2925.0	61.1658
$R 21$	3121.0	63.076
$R 22$	3294.0	65.2193
$R 23$	3435.0	66.6708
$R 24$	2877.0	60.49
$R 25$	3125.0	63.3171
$R 26$	3190.0	64.4361
$R 27$	3235.0	64.7648
$R 28$	3402.0	67.0302
$R 29$	3052.0	62.223
$R 30$	3062.0	62.6399
$R 31$	3259.0	64.5252
$R 32$	2834.0	60.7193
$R 33$	3150.0	63.8152
$R 34$	3129.0	63.809
$R 35$	3160.0	63.9215
$R 36$	2927.0	61.442

	FilledArea	CircDiamete
R37	3308.0	64.9664
R38	3244.0	64.3283
R39	3360.0	65.6243
R40	3521.0	68.4586
R41	3376.0	66. 0066
R42	3184.0	63.8943
R43	3242.0	64.4
R44	3067.0	62.3407
R45	3332.0	65.7603
R46	3731.0	72.1334
R47	3271.0	65.3114
R48	3173.0	63.5631
R49	3104.0	62.7311
R50	3152.0	63.3401
R51	3479.0	66. 4856
R52	3266.0	65.0981
R53	2706.0	58.4801
R54	3567.0	67.607
R55	3023.0	62.1885
R56	2902.0	60.5846
R57	2993.0	61.8261
R58	3442.0	66.7767
R59	3375.0	66. 3239
R60	3415.0	66.0713
R61	3029.0	61.9671
R62	2808.0	59. 5754
R63	2883.0	60.4642
R64	3673.0	69. 6643
R65	3373.0	65.8686
R66	3359.0	65.6857
R67	2856.0	60.241
R68	3082.0	62.5579
R69	2913.0	60.9172
R70	4087.0	76. 1574
R71	3191.0	64.1867
R72	3129.0	63.1673
R73	2925.0	60.8457

	FilledArea	CircDiamet
R74	3102.0	63.2596
R75	2781.0	59.6734
R76	3347.0	65.8187
R77	3285.0	64.8512
R78	2983.0	61.7607
R79	2984.0	61.6382
R80	3005.0	62.3286
R81	3631.0	69.1948
R82	3154.0	63.618
R83	2962.0	61.2668
R84	2923.0	60.7592
R85	2987.0	61.9611
R86	2619.0	57.9694
R87	3310.0	65.2305
R88	3394.0	66.1628
R89	3196.0	64.0321
R90	2775.0	59.4063
R91	3518.0	67.0897
R92	2820.0	60.1941
R93	3267.0	65.9851
R94	3489.0	68.1474
R95	3008.0	61.7714
R96	3032.0	62.4314
R97	3087.0	63.647
R98	3836.0	75.2311
R99	3167.0	63.9809
R100	2916.0	61.401
R101	3153.0	63.3854
R102	3294.0	65.3829
R103	2920.0	61.1132
R104	3029.0	63.2184
R105	3247.0	64.6985
R106	3359.0	66.5047
R107	3085.0	63.2313
R108	3053.0	64.3793
R109	2924.0	61.0265

Fig. S2-b1. (a) TEM image of the top surface of the AAO membrane with the chemical etching for 10 min corresponding the analyzed nanochannels after the thresholding. (b) Measurements of the sizes (diameter, unit: nm) of the analyzed nanochannels on the top surface of the AAO membranes.
(a)

(b)

	FilledArea	CircDiamet ϵ
$R 0$	2079.0	51.2939
$R 1$	2313.0	54.3009
$R 2$	2103.0	51.579
$R 3$	2345.0	54.5909
$R 4$	2201.0	52.6374
$R 5$	1310.0	40.6007
$R 6$	2126.0	52.0292
$R 7$	2181.0	52.6036
$R 8$	2174.0	52.4641
$R 9$	2192.0	53.7233
$R 10$	2340.0	54.5578
$R 11$	2178.0	52.5422
$R 12$	2162.0	52.4098
$R 13$	2207.0	52.9048
$R 14$	2162.0	52.15
$R 15$	2328.0	54.2432
$R 16$	2151.0	52.2516
$R 17$	2843.0	63.2774
$R 18$	2162.0	52.3407
$R 19$	2368.0	54.6665
$R 20$	2251.0	53.7247
$R 21$	2379.0	54.877
$R 22$	2262.0	53.8521
$R 23$	2463.0	56.3214
$R 24$	2164.0	52.265
$R 25$	2322.0	54.4543
$R 26$	2215.0	52.8736
$R 27$	2294.0	53.9513
$R 28$	2371.0	54.8696
$R 29$	2264.0	53.6002
$R 30$	2329.0	54.3841
$R 31$	2431.0	56.0737
$R 32$	2259.0	53.381
$R 33$	2282.0	53.6814
$R 34$	2383.0	55.6423
$R 35$	2335.0	54.3869
$R 36$	2119.0	51.8547
$R 37$	2308.0	54.0974
$R 38$	2266.0	53.5994
$R 39$	2417.0	55.5691

	FilledArea	CircDiamet
R40	2199.0	52.6575
$R 41$	2405.0	55.2177
$R 42$	2481.0	56.0682
$R 43$	2162.0	52.2697
$R 44$	2335.0	54.3686
$R 45$	2244.0	53.2282
$R 46$	2264.0	53.6645
$R 47$	2534.0	57.625
$R 48$	2202.0	52.8003
$R 49$	2292.0	54.0297
$R 50$	2277.0	53.8563
$R 51$	2523.0	57.3226
$R 52$	2419.0	55.3442
$R 53$	2302.0	54.2118
$R 54$	2423.0	55.2956
$R 55$	2393.0	55.2973
$R 56$	2325.0	54.0728
$R 57$	2167.0	52.3082
$R 58$	2515.0	56.4181
$R 59$	2195.0	52.6626
$R 60$	2386.0	54.9368
$R 61$	2413.0	55.2032
$R 62$	2336.0	54.4041
$R 63$	2509.0	57.1509
$R 64$	2321.0	54.2183
$R 65$	2473.0	56.0713
$R 66$	2415.0	55.1542
$R 67$	2337.0	54.3995
$R 68$	2607.0	58.0236
$R 69$	2275.0	53.6458
$R 70$	2580.0	57.1253
$R 71$	2431.0	55.6644
$R 72$	2022.0	50.8936
$R 73$	2637.0	57.8636
$R 74$	2173.0	52.497
$R 75$	2457.0	55.7355
$R 76$	2299.0	54.0809
$R 77$	2402.0	55.0423
$R 78$	2465.0	55.9482
$R 79$	2307.0	54.1034

	FilledArea	CircDiamet ϵ
R80	2491.0	56.4411
R81	2363.0	54.8216
R82	2540.0	56.8558
R83	2209.0	53.5119
R84	2302.0	54.0322
R85	2579.0	57.1011
R86	2359.0	54.9194
R87	2629.0	57.7226
R88	2378.0	54.9124
R89	2564.0	56.9075
R90	2401.0	55.2779
R91	2344.0	54.3236
R92	2693.0	58.6762
R93	2367.0	54.6353
R94	2525.0	56.6326
R95	2448.0	55.7301
R96	2260.0	53.7248
R97	2669.0	58.3209
R98	2410.0	55.3911
R99	2384.0	54.8803
R100	2434.0	55.4636
R101	2577.0	57.2283
R102	2395.0	55.0361
R103	2451.0	55.6854
R104	2610.0	57.771
R105	2426.0	55.9656
R106	2520.0	56.5984
R107	2343.0	54.6553
R108	2437.0	55.4899
R109	2638.0	58.0958
R110	2532.0	56.6683
R111	2581.0	57.3283
R112	2371.0	55.1474
R113	2407.0	55.3354
R114	2552.0	57.0706
R115	2702.0	59.8972
R116	2618.0	58.3722
R117	2341.0	55.4722

Fig. S2-b2. (a) TEM image of the bottom surface of the AAO membrane with the chemical etching for 10 min corresponding the analyzed nanochannels after the thresholding. (b) Measurements of the sizes (diameter, unit: nm) of the analyzed nanochannels on the bottom surface of the AAO membrane.
(a)

(b)

	FilledArea	lircDiamet
$R 0$	4436.0	75.0419
$R 1$	4305.0	73.8115
$R 2$	4334.0	74.2148
$R 3$	4620.0	78.1811
$R 4$	4375.0	74.635
$R 5$	4148.0	72.5747
$R 6$	4306.0	73.9202
$R 7$	3965.0	70.7805
$R 8$	4199.0	72.8204
$R 9$	4241.0	73.2941
$R 10$	5493.0	87.4851
$R 11$	4308.0	73.8878
$R 12$	4351.0	74.2685
$R 13$	4311.0	73.8504
$R 14$	4385.0	74.4691
$R 15$	4232.0	73.5419
$R 16$	4263.0	74.3756
$R 17$	4231.0	73.284
$R 18$	4106.0	72.1669
$R 19$	4409.0	75.0037
$R 20$	4396.0	75.1272
$R 21$	4276.0	73.8147
$R 22$	4431.0	75.0577
$R 23$	4263.0	73.4885
$R 24$	4393.0	74.7402
$R 25$	4470.0	75.5554
$R 26$	4245.0	74.1824
$R 27$	4520.0	75.641
$R 28$	4303.0	74.6337
$R 29$	4478.0	75.2952
$R 30$	4192.0	73.1995
$R 31$	4319.0	74.3011
$R 32$	4358.0	74.5772
$R 33$	4268.0	73.449
$R 34$	4317.0	73.8885
$R 35$	4465.0	75.2224
$R 36$	4856.0	80.2167
$R 37$	4523.0	75.7924

	FilledArea	CircDiamet ϵ
R38	4222.0	73.6575
R39	4268.0	73.8445
R40	4568.0	76.0984
R41	4245.0	73.2745
R42	4237.0	73.2824
R43	4455.0	75.1267
R44	4487.0	76.1703
R45	4313.0	74.0724
R46	4468.0	75.2709
R47	4298.0	73.7585
R48	4387.0	74.5602
R49	4177.0	72.9285
R50	4368.0	74.591
R51	4339.0	74.465
R52	4306.0	73.8482
R53	4315.0	73.96
R54	4255.0	73.3879
R55	4176.0	72.7508
R56	4275.0	73.783
R57	4723.0	77.4459
R58	4819.0	78.3528
R59	4354.0	74.504
R60	4289.0	74.023
R61	4208.0	72.9745
R62	4259.0	73.7248
R63	4604.0	76.421
R64	4294.0	73.8242
R65	4378.0	74.5994
R66	4348.0	74.2547
R67	4739.0	78.0809
R68	4518.0	76.0376
R69	4178.0	72.6368
R70	4378.0	74.9031
R71	4385.0	74.5639
R72	4397.0	74.6471
R73	4485.0	75.7311
R74	4645.0	77. 1648
R75	4832.0	78.884

	FilledArea	CircDiamete
R76	5159.0	82. 4848
R77	4644.0	77. 0534
R78	4473.0	75.5718
R79	4209.0	73.099
R80	4347.0	74.2592
R81	4269.0	73.779
R82	4394.0	74.8334
R83	4418.0	74.9646
R84	4636.0	77.0618
R85	4532.0	75.8982
R86	4089.0	72.7373
R87	4602.0	76.4336
R88	4132.0	72.4152
R89	4453.0	75.6278
R90	4453.0	75.8099
R91	4391.0	74.6935
R92	4242.0	73.4376
R93	4409.0	75.0307
R94	4648.0	78.1886
R95	4485.0	75.4773
R96	4327.0	74. 2688
R97	4570.0	76.6463
R98	4124.0	72.359
R99	4508.0	75.8343
R100	4501.0	76.0066
R101	4695.0	77.394
R102	4456.0	75.1711
R103	4224.0	73.4156
R104	4579.0	76.7955
R105	4663.0	77. 1009
R106	4174.0	72.9151
R107	4649.0	76.9123
R108	4674.0	77.0009
R109	4282.0	74.0181
R110	4532.0	76.1444
R111	4253.0	73.7926
R112	5042.0	80.9738
R113	4664.0	77.5866

Fig. S2-c1. (a) TEM image of the top surface of the AAO membrane with the chemical etching for 35 min corresponding the analyzed nanochannels after the thresholding. (b) Measurements of the sizes (diameter, unit: nm) of the analyzed nanochannels on the top surface of the AAO membranes.
(a)

(b)

	FilledArea	CircDiamete
RO	2878.0	60.8983
R1	3800.0	73.368
R2	3071.0	62.5195
R3	2981.0	61.6469
R4	2922.0	61.1829
R5	3214.0	64.7874
R6	2841.0	59.9673
R7	2944.0	60.9583
R8	2902.0	60.9081
R9	3345.0	65. 2976
R10	2797.0	59.8655
R11	3111.0	63.594
R12	3320.0	65.2738
R13	3058.0	62.2073
R14	3226.0	65.1062
R15	2860.0	60.2729
R16	3065.0	62.7506
R17	3141.0	63.1788
R18	2874.0	60.3391
R19	3228.0	64. 4757
R20	2849.0	59.9866
R21	2896.0	60.5291
R22	3207.0	64.1001
R23	2790.0	59.3751
R24	3054.0	62.3643
R25	3339.0	69. 3243
R26	3043.0	62.422
R27	3084.0	62.5632
R28	3664.0	70.8198
R29	2973.0	61.4729
R30	2937.0	61.2704
R31	2895.0	60.5612
R32	2957.0	61.1248
R33	3054.0	62. 3653
R34	3326.0	66.2659
R35	3113.0	62.767
R36	3160.0	63.5541
R37	3065.0	62. 4828
R38	2927.0	60.9277
R39	2995.0	61.7181

	FilledArea	CircDiamete
$R 40$	2967.0	61.5634
$R 41$	3092.0	63.2992
$R 42$	3018.0	62.0976
$R 43$	3086.0	63.0298
$R 44$	3091.0	62.6624
$R 45$	2934.0	60.8575
$R 46$	3101.0	62.992
$R 47$	3025.0	62.2724
$R 48$	3628.0	70.7519
$R 49$	3004.0	63.0533
$R 50$	3973.0	78.9509
$R 51$	2761.0	59.0271
$R 52$	3675.0	72.1167
$R 53$	3182.0	64.2085
$R 54$	3037.0	63.4268
$R 55$	3022.0	62.2313
$R 56$	3085.0	62.712
$R 57$	3061.0	62.3631
$R 58$	2942.0	61.3279
$R 59$	2929.0	60.9198
$R 60$	3095.0	63.1882
$R 61$	2850.0	60.0808
$R 62$	3105.0	62.8122
$R 63$	3282.0	67.4711
$R 64$	3125.0	64.6425
$R 65$	2864.0	60.5996
$R 66$	2850.0	60.2786
$R 67$	3014.0	61.9234
$R 68$	3059.0	62.4256
$R 69$	3153.0	63.4917
$R 70$	2865.0	60.6087
$R 71$	3133.0	63.3999
$R 72$	3006.0	62.6052
$R 73$	2933.0	61.6794
$R 74$	2914.0	60.7499
$R 75$	3049.0	62.2421
$R 76$	3502.0	66.7628
$R 77$	2944.0	61.5647
$R 78$	2962.0	61.6738
$R 79$	3114.0	63.4715

Fig. S2-c2. (a) TEM image of the bottom surface of the AAO membrane with the chemical etching for 35 min corresponding the analyzed nanochannels after the thresholding. (b) Measurements of the sizes (diameter, unit: nm) of the analyzed nanochannels on the bottom surface of the AAO membrane.
(a)

(b)

	FilledArea	CircDiamet ϵ
$R 0$	5164.0	81.3076
$R 1$	5190.0	81.5911
$R 2$	4797.0	79.1318
$R 3$	5598.0	84.2104
$R 4$	5023.0	80.3729
$R 5$	5145.0	80.9501
$R 6$	5479.0	83.9666
$R 7$	5486.0	84.5675
$R 8$	5136.0	81.1881
$R 9$	4945.0	79.5335
$R 10$	5320.0	82.3126
$R 11$	5262.0	82.0333
$R 12$	5153.0	81.5302
$R 13$	5417.0	84.1189
$R 14$	5349.0	82.5674
$R 15$	4981.0	79.6637
$R 16$	5341.0	82.4525
$R 17$	5433.0	83.1568
$R 18$	5245.0	81.7281
$R 19$	4999.0	79.9145
$R 20$	5099.0	80.945
$R 21$	5657.0	84.9728
$R 22$	5561.0	84.0533
$R 23$	5451.0	83.4536
$R 24$	5588.0	84.4297
$R 25$	4987.0	79.9528
$R 26$	5368.0	82.9008
$R 27$	5407.0	83.0974
$R 28$	5448.0	83.5516
$R 29$	2189.0	53.3376
$R 30$	5297.0	82.2954
$R 31$	5319.0	82.2438
$R 32$	5169.0	81.4144
$R 33$	5522.0	83.6236
$R 34$	5532.0	84.2442
$R 35$	5440.0	83.3723
$R 36$	5339.0	82.4565
$R 37$	5478.0	84.6049
$R 38$	5254.0	82.0216

	FilledArea	CircDiamete
$R 39$	5604.0	84.384
$R 40$	5427.0	82.9761
$R 41$	5551.0	83.9997
$R 42$	5265.0	81.8817
$R 43$	5390.0	82.9505
$R 44$	5306.0	82.061
$R 45$	5330.0	82.2311
$R 46$	5562.0	84.0964
$R 47$	5282.0	81.9485
$R 48$	5295.0	82.0327
$R 49$	5454.0	83.2543
$R 50$	5481.0	83.5308
$R 51$	5610.0	84.534
$R 52$	5450.0	83.2479
$R 53$	5521.0	83.7778
$R 54$	5349.0	82.465
$R 55$	5593.0	84.2676
$R 56$	5368.0	82.6404
$R 57$	5632.0	84.7561
$R 58$	5458.0	83.4161
$R 59$	5490.0	83.4725
$R 60$	5499.0	83.6823
$R 61$	5439.0	83.0819
$R 62$	5462.0	83.2946
$R 63$	5405.0	82.9261
$R 64$	5677.0	85.0142
$R 65$	5536.0	83.7704
$R 66$	5567.0	84.2145
$R 67$	5484.0	83.5169
$R 68$	5590.0	84.2554
$R 69$	5415.0	83.1036
$R 70$	5480.0	83.3843
$R 71$	5459.0	83.4139
$R 72$	5465.0	83.2398
$R 73$	5508.0	83.7613
$R 74$	5591.0	84.3519
$R 75$	5378.0	82.663
$R 76$	5671.0	84.8092
$R 77$	5560.0	84.0689

	FilledArea	CircDiamet ϵ
R78	5392.0	82.792
R79	5483.0	83.4755
R80	5400.0	82.9098
R81	5436.0	83.1403
R82	5642.0	84.7981
R83	5398.0	82.967
R84	5702.0	85.0459
R85	5518.0	83.8685
R86	5275.0	81.9675
R87	5483.0	83.811
R88	5408.0	82.7909
R89	5552.0	84.029
R90	5546.0	84.0274
R91	5495.0	83.6185
R92	5250.0	81.7522
R93	5468.0	83.4888
R94	5297.0	82.022
R95	5466.0	83.3232
R96	5322.0	82.4596
R97	5365.0	82.6228
R98	5371.0	82.8105
R99	5364.0	82.58
R100	5489.0	83.6192
R101	5123.0	80.8299
R102	5323.0	82.2692
R103	5489.0	84.0531
R104	5172.0	81.1133
R105	5228.0	81.5523
R106	5258.0	81.9099
R107	5296.0	81.9956
R108	5227.0	81.4489
R109	5334.0	83.2071
R110	5120.0	80.8192
R111	5056.0	80.2532
R112	5143.0	80.9187
R113	5116.0	81.0385
R114	5263.0	81.903
5		

Fig. S2-d1. (a) TEM image of the top surface of the AAO membrane with the chemical etching for 60 min corresponding the analyzed nanochannels after the thresholding. (b) Measurements of the sizes (diameter, unit: nm) of the analyzed nanochannels on the top surface of the AAO membrane.
(a)

(b)

	FilledArea	CircDiamet ϵ
RO	4925.0	82.9708
R1	3767.0	69.4588
R2	4044.0	71.884
R3	4341.0	74.3388
R4	4280.0	75.7398
R5	4205.0	73.9961
R6	4483.0	76.7119
$R 7$	4514.0	76.2178
R8	4001.0	71.4952
R9	3863.0	69.908
R10	4276.0	74.1223
R11	4068.0	71.8126
R12	4176.0	73.0008
R13	3997.0	71.5954
R14	4152.0	72.5951
R15	4118.0	72.3579
R16	4725.0	81.0487
R17	4397.0	75.524
R18	4043.0	71.803
R19	3815.0	69.4566
R20	3961.0	71.0614
R21	4275.0	76.3001
R22	3710.0	68.8924
R23	4108.0	72.3695
R24	3687.0	68.4515
R25	4055.0	72.0059
R26	4203.0	73.4156
R27	4048.0	72.2553
R28	4199.0	73.1195
R29	4100.0	72.6159
R30	4015.0	71.6691
R31	4167.0	73.0086
R32	4362.0	75.4902
R33	3845.0	69.883
R34	3871.0	70.6035
R35	4059.0	71.8989
R36	3993.0	71.4225
R37	4386.0	75.1341
R38	3544.0	67.1801
R39	3952.0	70.8573

	FilledArea	CircDiamet ϵ
$R 40$	4359.0	76.9223
$R 41$	4093.0	72.0994
$R 42$	4350.0	74.5443
$R 43$	3613.0	68.3328
$R 44$	3158.0	67.3926
$R 45$	3907.0	70.5791
$R 46$	4345.0	74.595
$R 47$	4238.0	73.6776
$R 48$	4209.0	73.2779
$R 49$	3887.0	70.9235
$R 50$	4238.0	73.3324
$R 51$	3588.0	67.4849
$R 52$	4163.0	72.977
$R 53$	4060.0	71.7301
$R 54$	4244.0	76.2616
$R 55$	4421.0	74.9259
$R 56$	3914.0	70.4056
$R 57$	3886.0	70.2241
$R 58$	4306.0	73.9191
$R 59$	4440.0	76.3253
$R 60$	4063.0	71.8987
$R 61$	4068.0	73.0575
$R 62$	4411.0	76.7216
$R 63$	3950.0	70.9213
$R 64$	4113.0	72.2885
$R 65$	3901.0	70.3256
$R 66$	3705.0	68.5379
$R 67$	3922.0	70.4532
$R 68$	4676.0	79.7873
$R 69$	4524.0	76.783
$R 70$	3970.0	71.045
$R 71$	1772.0	47.9722
$R 72$	3946.0	70.9616
$R 73$	4114.0	72.6501
$R 74$	4121.0	72.3623
$R 75$	3861.0	69.9345
$R 76$	4084.0	71.9785
$R 77$	3943.0	70.8099
$R 78$	3657.0	68.1078
$R 79$	4466.0	76.9699

Fig. S2-d2. (a) TEM image of the bottom surface of the AAO membrane with the chemical etching for 60 min corresponding the analyzed nanochannels after the thresholding. (b) Measurements of the sizes (diameter, unit: nm) of the analyzed nanochannels on the bottom surface of the AAO membrane.
3. Selected area electron diffraction patterns of the AAO membranes with different nanochannel sizes after partially covering the central transmitted beam by a beam stopper.

Fig. S3 Selected area electron diffraction patterns of the AAO membranes with different nanochannel sizes after partially covering the central transmitted beam by a beam stopper. (a), (b), (c) and (d) Top surfaces of the nanochannels in the AAO membranes formed after etching the through-channel membranes immersed in a 5% $\mathrm{H}_{3} \mathrm{PO}_{4}$ solution at $30{ }^{\circ} \mathrm{C}$ for $0,10,35$ and 60 min , respectively, corresponding to the nanochannel sizes of $52.9 \pm 3.0,64.6 \pm 3.6,75.0 \pm 2.2$ and $82.6 \pm 3.0 \mathrm{~nm}$. (e), (f), (g) and (h) Bottom surfaces of the nanochannels in the same membranes formed after etching the through-channel membranes for $0,10,35$, and 60 min , respectively, corresponding to the nanochannel sizes of $37.1 \pm 2.0,54.8 \pm 2.4,62.9 \pm 3.0$ and $72.6 \pm 3.7 \mathrm{~nm}$.
4. Statistic measurements of 300 nanochannel spacings and theirs distributions on the top and the bottom surfaces for every AAO membrane by the DM software
(a1)

(b1)

(c1)

(d1)

(a2)

(b2)

(c2)

(d2)

(f1)

(f2)

Fig. S4. Histograms of 300 nanochannel spacing on the top and bottom surfaces for every AAO membrane. (a1), (b1), (c1), and (d1) show the spacing distributions on the top surface of the membranes after the chemical etching for $0,10,35$, and 60 min , respectively. (a2), (b2), (c2), and (d2) correspond to those on the bottom surfaces in the same membranes, respectively. (f1) and (f2) demonstrate the line profiles from one of two adjacent nanochannels by the DM software, respectively, the widths of the dashed-line frames represent the spacing of two adjacent nanochannels, insets: typical images of the spacing measurements based on the line profiles.
5. Reflection spectra of the top and the bottom surfaces of the truncated conical nanochannels in the as-prepared AAO membrane

Fig. S5. Reflection spectra of the top and the bottom surfaces of the as-prepared $70 \mu \mathrm{~m}$ thick AAO membrane by using a UV-Vis-NIR spectrophotometer with an integrating sphere (PerkinElmer Lambda 750S).

6. Current density with anodization time at the self-ordering growth (steady-state) process

Fig. S6. Curve of the current density with the anodization time during the self-ordering growth of the AAO membranes (under the anodization voltage of 40 V at $13^{\circ} \mathrm{C}$).

7. Plot the experimental data of current density at different anodization temperatures

Fig. S7. Current density during the anodization process with the electrolyte temperature and the fit curve according the equation (3) in the text. The fitted results are $i_{O}=1.45 \times 10^{5}$, $i_{M}=1.00 \times 10^{8}, \alpha=3300, \quad \beta=4800$.

8. Etching as-prepared through-channel AAO membranes based on the temperature gradient regime to achieve the nanochannels with cylindrical geometry

The as-prepared through-channel AAO membranes through a drying treatment were floated on the surface of a $5 \% \mathrm{H}_{3} \mathrm{PO}_{4}$ solution (Fig. S8), where the $\mathrm{H}_{3} \mathrm{PO}_{4}$ solution was put in a petri dish that was partially immersed into a digital-control water bath with a temperature of $30^{\circ} \mathrm{C}$ by control of a heating element, the temperature of the bottom surface of the AAO membranes equals to that of the $\mathrm{H}_{3} \mathrm{PO}_{4}$ solution, which can be measured by a thermocouple fixed into the water bath. The digital-control water bath was put into a horizontal refrigerator with a surrounding temperature of 8 ${ }^{\circ} \mathrm{C}$, the surrounding temperature can be controlled by the refrigerator, the temperature of the top surfaces of the AAO membrane exposed to the surrounding were measured by a mercury thermometer. The bottom surfaces of the membranes are in contact with the surface of the $\mathrm{H}_{3} \mathrm{PO}_{4}$ solution with a high temperature of $30^{\circ} \mathrm{C}$ by control of a constant temperature in a digital-control water bath, while the top surfaces are exposed to the surrounding with a low temperature of $8{ }^{\circ} \mathrm{C}$, this gives rise to a temperature gradient of the solution in the nanochannels from down to up based on a capillary phenomenon. In the case, the enlarging rate of the nanochannels on the bottom segment is larger than that on the top segment during the etching process, which results in the decrease of the original size deviation along the long axis of the nanochannels (Fig. 5a in the text). For the as-prepared through channel AAO membranes with different thicknesses (e.g., $27 \mu \mathrm{~m}, 60 \mu \mathrm{~m}, 70 \mu \mathrm{~m}$ and $93 \mu \mathrm{~m}$), the etching time corresponds to $2 \mathrm{~min}, 5 \mathrm{~min}, 10 \mathrm{~min}$ and 40 min , respectively.

Fig. S8. Schematic illustration of the setup of the etching method based on the temperature gradient regime.
9. Morphologies and size distributions of the top and the bottom nanochannels in the through-channel AAO membranes formed at the constant voltage of 40 V and different electrolyte (anodization) temperatures

Fig. S9. SEM images of the top and bottom surfaces of the through-channel AAO membranes formed at the constant voltage of 40 V and different anodization temperatures, all of the through-channel membranes are not through any etching treatment. (a1), (a2) Top and bottom surfaces of a $27 \mu \mathrm{~m}$ thick membrane prepared through the second anodization at the constant temperature of $0^{\circ} \mathrm{C}$ for 660 min , respectively. (b1), (b2) Top and bottom surfaces of a $60 \mu \mathrm{~m}$ thick membrane prepared at $11^{\circ} \mathrm{C}$ for 720 min , respectively. (c1), (c2) Top and bottom surfaces of a $70 \mu \mathrm{~m}$ thick membrane prepared at $13^{\circ} \mathrm{C}$ for 640 min , respectively. (d1), (d2) Top and bottom surfaces of a $93 \mu \mathrm{~m}$ thick membrane prepared at $17^{\circ} \mathrm{C}$ for 660 min , respectively.

Fig. S10. Size distribution histograms of the top and bottom nanochannels in the corresponding through-channel AAO membranes shown in Fig. S9.
10. Reducing the size difference between the top and the bottom nanochannels in the AAO membranes by an effective etching method based on the temperature gradient regime

Fig. S11. SEM images of the top and the bottom surfaces of the AAO membranes by the etching method based on the temperature gradient regime. (a1), (a2) Top and bottom surfaces of the $27 \mu \mathrm{~m}$ thick membrane after the etching for 2 min , respectively. (b1), (b2) Top and bottom surfaces of the $60 \mu \mathrm{~m}$ thick membrane after the etching for 5 min , respectively. (c1), (c2) Top and bottom surfaces of the $70 \mu \mathrm{~m}$ thick membrane after the etching for 10 min , respectively. (d1)-(f1) Top surfaces of the $93 \mu \mathrm{~m}$ thick membranes after the etching for 10,25 , and 40 min , respectively, (d2)-(f2) Corresponding the bottom surfaces of the $93 \mu \mathrm{~m}$ thick membranes after the etching for 10,25 , and 40 min , respectively.

Fig. S12. Size distribution histograms of the top and the bottom nanochannels in the AAO membranes shown in Fig. S11.

11. Comparisons of the voltage compensation method, and constant anodization voltage and subsequent temperature gradient etching method to fabricate the AAO membranes

Consider the nanochannel size is linearly proportional to the anodization voltage during the anodization, Shang et al. proposed a voltage compensation method to fabricate the AAO membranes with uniform diameter of nanochannels (G. L. Shang et al. Mater. Lett. 110, 156-159 (2013)). Note that the voltage compensation method presents the essentially different aspects when comparing our constant anodization voltage and subsequent temperature gradient etching method:
(a). Growth regimes of nanochannels in AAO membranes are entirely different

The growth regimes of the nanochannels in AAO membranes strongly depend on the anodization voltage. Furthermore, pore spacing, pore size and wall thickness are linearly proportional to the voltage during both mild anodization (MA) and hard anodization (HA) (W. Lee et al. Nat. Mater. 5, 741-747 (2006)). In typical MA processes, self-ordered arrays of alumina nanopores can be obtained within three self-ordering growth regimes: (1) sulphuric acid at 25 V for an interpore distance $\left(D_{\mathrm{int}}\right)=63 \mathrm{~nm}$, (2) oxalic acid at 40 V for $D_{\mathrm{int}}=100 \mathrm{~nm}$ (W. Lee et al. Nat. Mater. 5, 741-747 (2006)), and (3) phosphoric acid at 195 V for $D_{\mathrm{int}}=500 \mathrm{~nm}$, indicating the self-ordering growth regime represents the constant voltages during the anodization.

In our work, all of the AAO membranes were fabricated under the self-ordering regime: oxalic acid $\left(\mathrm{H}_{2} \mathrm{C}_{2} \mathrm{O}_{4}\right)$ at 40 V . The subsequent etching of the self-ordered AAO membranes only tune the nanochannel size but do not change their spacing and the ordered arrangement. That is, our AAO membranes fabricated under self-ordering regime and subsequent etching method are self-ordered nanochannel arrays.

In contrast, for the voltage compensation mode, the voltage was gradually increased from 40 to 52 V during the anodization. Obviously, the growth method has deviated from the self-ordering growth regime. As a result, the formed AAO membranes are not self-ordered nanochannel arrays (the detail will be given in (b)).
(b). Structures of the nanochannels in the AAO membranes fabricated by Shang's method and our method are extremely different due to the two completely different growth regimes
Firstly, in terms of the voltage compensation method
From the cross section SEM image (Fig. S13 from Shang's paper), it is found that the spacing between the nanochannels in the AAO membrane fabricated by the voltage compensation method, obviously increases along the long axis of the nanochannels from about 102 nm on the upper layer marked with U , to about 120 nm on the middle layer marked with M , and then to about 134 nm on the under layer marked with L , this is because the nanochannel spacing in the AAO membranes formed under ordinary MA conditions is linearly dependent on the voltage with a proportionality constant of 2.5 nmV^{-1} (W. Lee et al. Nat. Mater. 5, 741-747 (2006), Nat. Nanotechnol. 3, 234-239 (2008).) One can clearly observe that the spacing displays remarkable increase from up to down. Additionally, the nanochannel density deceases from up to down along the
long axis. Since the nanochannel spacing continuously changes during the growth of the nanochannels from up to down with raising the anodization voltage gradually, the growth orientation is not coaxial, which results in a winding (not upright) growth of the nanochannels, especially the nanochannel structurers between the bottom and top sections are extremely different shown in the following surface SEM images, therefore, the nanochannel configuration is not cylindrical. That is, the cylindrical nanochannels cannot be fabricated by Shang's method.

(b)

Fig. S13. (a) SEM images of sample with the compensation voltage increased from 40 to 52 V . (b) Current-time curve and applied voltage. Reproduced from G. L. Shang et al. Mater. Lett. 110, 156-159 (2013).

On the other hand, although SEM images of the surfaces of AAO membranes fabricated under the voltage compensation mode were not given in the Shang's paper, we have supplemented the experimental data based on the voltage compensation method. Figs. S13(a1) and S13(a2) correspond to SEM images of the top and bottom surfaces of AAO membranes when the anodization voltage increases from 40 V to 52 V with a scan rate of $40 \mathrm{mV} / \mathrm{min}$ during the second anodization, it is clearly observed that the nanochannels on the top section (corresponding to the starting voltage of 40 V) basically keep the ordered arrangement, however, the ordered arrangement of the nanochannels on the bottom section (corresponding to the ending voltage of 52 V) has been damaged substantially (Fig. S14(a2)), especially, the majority of pores grown on the bottom surface are not regular as compared with those formed on the top surfaces, which further confirms that the whole nanochannels are not cylindrical. The supplemented experiments unambiguously testify that the uniform nanochannel diameter cannot be obtained by the voltage compensation method owing to breaking the self-ordering growth regime with the irregular shape of the nanochannels. Furthermore, to study the effect of voltage on the nanochannel structures, we have fabricated the AAO membranes by the voltage compensation from 40 V to 60 V . It is found the self-ordered arrangement of the nanochannels on the bottom surface has been damaged completely (Fig. S14(b2)), also most of the pores on the bottom surface present irregular shape.

Fig. S14. SEM images of the AAO membranes fabricated by the voltage compensation method. (a1), (a2) Top and bottom surfaces for the voltage changing from 40 V to 52 V ; (b1), (b2) Top and bottom surfaces for the voltage changing from 40 V to 60 V .

Secondly, in terms of our work, the AAO membranes were fabricated by the self-ordering regime with the constant voltage of 40 V .

Statistic measurements of 300 nanochannel spacings on the top and bottom surfaces in the AAO membrane formed by the self-ordering growth (Fig. S4), illustrate the average spacing is constant (102.5 nm). Figs. S15(a1) and S15(a2) display SEM images of the top and bottom surfaces of the as-prepared self-ordered AAO membrane (reproduced from Fig. S10). While Figs. S15(b1) and S15(b2) illustrate SEM images of the top and bottom surfaces of the same AAO membrane after the temperature gradient etching (reproduced from Fig. S10). It is observed the nanochannel size on the bottom surface (Fig. S15(a2)) is much smaller than that on the top surface (Fig. S15(a1)), but the spacing between adjacent nanocnanels on the bottom surface is the same as that on the top surface, indicating the growth orientation of the nanochannels is coaxial with upright nanochannels. After the temperature gradient etching, the nanochannel size on the bottom surface (Fig. S15(b2)) is equals to that on the top surface (Fig. S15(b1)), also the nanochannel spacings on both the bottom and top surfaces are constant after the etching. So, the cylindrical nanochannels can be achieved by the temperature gradient etching of the truncated conical nanochannels. also, the nanochannels fabricated by the self-ordering growth regime and subsequent temperature gradient etching, exhibit hexagonally self-ordered arrangement with regular nanochannels.

Fig. S15. SEM images of the AAO membrane fabricated by the self-ordering growth at the constant voltage of 40 V . (a1), (a2) Top and bottom surfaces of the as-prepared AAO membrane; (b1), (b2) Top and bottom surfaces via the temperature gradient etching.

The following table lists the comparisons of the nanochannels: one is the self-ordered AAO membranes fabricated by our constant anodization voltage method (self-ordering growth regime) and the subsequent temperature gradient etching, the other is the AAO membranes fabricated by the voltage compensation mode (non self-ordering growth regime) reported by Shang et al.

Comparison of parameters	Self-ordering growth regime	Non self-ordering growth regime
Anodization voltage	Constant (40 V)	$\begin{aligned} & \text { Variable (increasing } \\ & \text { from } 40 \mathrm{~V} \text { to } 52 \mathrm{~V} \text {) } \end{aligned}$
Spacing of nanochannels ($D_{\text {int }}$)	Constant (102.5 nm)	Variable (from 102 nm to 134 nm)
Arrangement of nanochannels	Self-ordered nanochannel arrays	Disordered nanochannel arrays (on the bottom surface)
Growth orientation of nanochannels	Coaxial growth	Non-coaxial growth
Configurations of nanochannels	High regular shape (upright nanochannels)	Irregular shape (winding nanochannels)
	Truncated conical nanochannels in as-prepared AAO membranes	nanochannels under the non-coaxial growth
	Cylindrical nanochannels via the etching based on the temperature gradient regime	
Density of nanochannels	$\begin{aligned} & \text { Constant }(1.1 \times \\ & \left.10^{10} \mathrm{~cm}^{-2}\right) \\ & \left(\frac{2}{\sqrt{3} D_{\text {int }}{ }^{2}} \times\right. \\ & \left.10^{14} \mathrm{~cm}^{-2}\right) \end{aligned}$	Variable (cannot be calculated statistically due to the disordered arrangement of nanochannels)
References	Our work	Publication in Materials Letters 110 (2013) 156-159

