Supplementary information

Toward temperature-insensitive near-infrared optical gain using low-toxicity Ag₂Se quantum dots

Chen Liao, *^a Luping Tang,^{b,c} Yan Li,^a Shaoling Sun,^d Liye Wang,^a Jie Xu,^a Yunzhe Jia^a and

Zixuan Gu ^a

^{a.} College of Electronic and Optical Engineering & College of Microelectronics, Nanjing

University of Posts and Telecommunications, Nanjing 210023, China

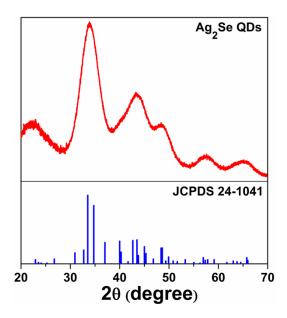
^{b.} College of Mechanical and Electronic Engineering, Nanjing Forestry University, Nanjing

210037, China

^{c.} SEU-FEI Nano-Pico Center, Key Lab of MEMS of Ministry of Education, Southeast

University, Nanjing 210096, China

^{d.} Joint International Research Laboratory of Information Display and Visualization, School of


Electronic Science and Engineering, Southeast University, Nanjing 210096, China

Corresponding author

*E-mail: chenliao@njupt.edu.cn.

This PDF file includes:

Fig. S1-S4 Supplementary text References

Fig. S1 XRD spectrum (top) of Ag₂Se QDs and XRD pattern (bottom) of the orthorhombic Ag₂Se bulk (JCPDS 24-1041).

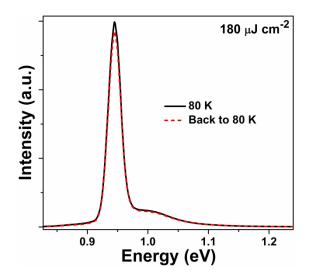


Fig. S2 The initial emission spectrum of a Ag_2Se QD film recorded at 80 K and the emission spectrum after heated to 340 K and then cooled back to 80 K.

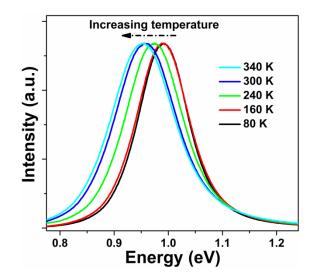


Fig. S3 Spontaneous emission (SE) spectra of a Ag_2Se QD film recorded at temperatures of 80-340 K.

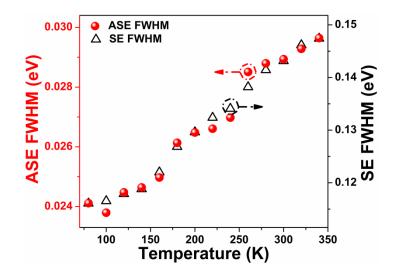


Fig. S4 ASE FWHM and SE FWHM versus temperature.

Supplementary text

S1. Bohr exciton diameter of orthorhombic Ag₂Se

The Bohr exciton diameter (D_B) of orthorhombic Ag₂Se can be calculated according to Griffiths equation:^{1,2}

$$D_{\rm B} = \frac{8\pi\epsilon_0\epsilon\hbar^2}{e^2} \left(\frac{1}{m_e^*} + \frac{1}{m_h^*}\right)$$

where ε_0 is the vacuum dielectric constant, ε is the dielectric constant of the material, \hbar is the reduced Planck constant, e is the charge on the electron, and m_e^* and m_h^* are the effective masses of the electron and hole, respectively. For the orthorhombic Ag₂Se, ε is 11,³ m_e^* equals 0.17 m₀, and m_h^* equals 0.75 m₀, respectively,³⁻⁶ where m₀ is the free-electron mass. Therefore, the Bohr exciton diameter of orthorhombic Ag₂Se is calculated to be 8.4 nm.

References

- 1. D. J. Griffiths, *Introduction to quantum mechanics*, Prentice Hall, Upper Saddle River, NJ, USA, 1995.
- 2. V. I. Klimov, Nanocrystal quantum dots, CRC Press, Boca Raton, FL, USA, 2nd edn., 2010.
- 3. V. V. Gorbachev and I. M. Putilin, Phys. Status Solidi B, 1975, 69, K153-K156.
- 4. V. Damodara Das and D. Karunakaran, J. Appl. Phys., 1990, 67, 878-883.
- 5. C. M. Fang, R. A. De Groot and G. A. Wiegers, J. Phys. Chem. Solids, 2002, 63, 457-464.
- 6. S. Praharaj, S. Nath, S. Panigrahi, S. Basu, S. K. Ghosh, S. Pande, S. Jana and T. Pal, *Chem. Commun.*, 2006, 3836-3838.